Anti-synchronization Between Two Coupled Networks with Unknown Parameters Using Adaptive and Pinning Controls

被引:1
作者
Sun, Tian-Tian [1 ]
Li, Shi-Xing [2 ]
Sun, Wei-Gang [1 ]
机构
[1] Hangzhou Dianzi Univ, Sch Sci, Hangzhou 310018, Zhejiang, Peoples R China
[2] Zhejiang Univ Finance & Econ, Sch Math & Stat, Hangzhou 310018, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
anti-synchronization; adaptive; pinning; COMPLEX NETWORKS; DYNAMICS; SYSTEMS;
D O I
10.1088/0253-6102/68/6/749
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we study anti-synchronization between two coupled networks where the node dynamics has an unknown system parameter. By designing adaptive and pinning control schemes, we realize the anti-synchronization. By Lyapunov stability theory, we obtain two theorems on the appearance of anti-synchronization. In addition, we derive a criterion for the pinning number of nodes. Finally we provide two numerical examples to show the effectiveness of our proposed control schemes. When the anti-synchronization is achieved, we successfully identify the unknown system parameter.
引用
收藏
页码:749 / 754
页数:6
相关论文
共 50 条
  • [21] Cluster synchronization of linearly coupled complex networks via linear and adaptive feedback pinning controls
    Shi, Lin
    Zhu, Hong
    Zhong, Shouming
    Shi, Kaibo
    Cheng, Jun
    NONLINEAR DYNAMICS, 2017, 88 (02) : 859 - 870
  • [22] Adaptive synchronization and anti-synchronization of two different chaotic systems
    Cai Na
    Jing Yuan-Wei
    Zhang Si-Ying
    ACTA PHYSICA SINICA, 2009, 58 (02) : 802 - 813
  • [23] Anti-synchronization of fractional order chaotic and hyperchaotic systems with fully unknown parameters using modified adaptive control
    Al-Sawalha, M. Mossa
    Al-Sawalha, Ayman
    OPEN PHYSICS, 2016, 14 (01): : 304 - 313
  • [24] Anti-synchronization of four scroll attractor with fully unknown parameters
    El-Dessoky, M. M.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (02) : 778 - 783
  • [25] Adaptive anti-synchronization of two identical and different hyperchaotic systems with uncertain parameters
    Al-Sawalha, M. Mossa
    Noorani, M. S. M.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (04) : 1036 - 1047
  • [26] Anti-synchronization in two non-identical hyperchaotic systems with known or unknown parameters
    Wang, Zuolei
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (05) : 2366 - 2372
  • [27] Anti-synchronization analysis and pinning control of multi-weighted coupled neural networks with and without reaction-diffusion terms
    Hou, Jie
    Huang, Yanli
    Ren, Shunyan
    NEUROCOMPUTING, 2019, 330 : 78 - 93
  • [28] Anti-synchronization of Liu system and Lorenz system with known or unknown parameters
    Wang, Zuo-Lei
    Shi, Xue-Rong
    NONLINEAR DYNAMICS, 2009, 57 (03) : 425 - 430
  • [29] Lag synchronization via pinning control between two coupled networks
    Weigang Sun
    Shuai Wang
    Guanghui Wang
    Yongqing Wu
    Nonlinear Dynamics, 2015, 79 : 2659 - 2666
  • [30] H_infinity Anti-synchronization of Chaotic Systems with Unknown Parameters
    Du, Liming
    Wang, Fengying
    Zhang, Hui
    INDUSTRIAL INSTRUMENTATION AND CONTROL SYSTEMS II, PTS 1-3, 2013, 336-338 : 528 - +