NUMERICAL APPROXIMATION OF NEMATIC LIQUID CRYSTAL FLOWS GOVERNED BY THE ERICKSEN-LESLIE EQUATIONS

被引:24
作者
Walkington, Noel J. [1 ]
机构
[1] Carnegie Mellon Univ, Dept Math, Pittsburgh, PA 15213 USA
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2011年 / 45卷 / 03期
基金
美国国家科学基金会;
关键词
Liquid crystal; Ericksen-Leslie equations; numerical approximation; FINITE-ELEMENT APPROXIMATIONS; EXISTENCE; STABILITY; POINTS;
D O I
10.1051/m2an/2010065
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Numerical approximation of the flow of liquid crystals governed by the Ericksen-Leslie equations is considered. Care is taken to develop numerical schemes which inherit the Hamiltonian structure of these equations and associated stability properties. For a large class of material parameters compactness of the discrete solutions is established which guarantees convergence.
引用
收藏
页码:523 / 540
页数:18
相关论文
共 34 条
[1]  
[Anonymous], 2006, Applications of mathematics, DOI DOI 10.1007/S10778-006-0110-3
[2]  
[Anonymous], 1994, Springer Tracts in Natural Philosophy
[3]   Finite element approximations of harmonic map heat flows and wave maps into spheres of nonconstant radii [J].
Banas, L'ubomir ;
Prohl, Andreas ;
Schaetzle, Reiner .
NUMERISCHE MATHEMATIK, 2010, 115 (03) :395-432
[4]   Convergence of a fully discrete finite element method for a degenerate parabolic system modelling nematic liquid crystals with variable degree of orientation [J].
Barrett, JW ;
Feng, XB ;
Prohl, A .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2006, 40 (01) :175-199
[5]   Finite element approximations of the Ericksen-Leslie model for nematic liquid crystal flow [J].
Becker, Roland ;
Feng, Xiaobing ;
Prohl, Andreas .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (04) :1704-1731
[6]  
BETHUEL F, 1995, GINZBURGLANDAU VORTI
[7]  
COHEN R, 1987, IMA VOLUMES MATH ITS, V5
[8]   Fourier spectral approximation to a dissipative system modeling the flow of liquid crystals [J].
Du, Q ;
Guo, BY ;
Shen, J .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2001, 39 (03) :735-762
[9]   The existence of regular boundary points for non-linear elliptic systems [J].
Duzaar, Frank ;
Kristensen, Jan ;
Mingione, Giuseppe .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 602 :17-58
[10]  
ERICKSEN JL, 1987, RES MECH, V21, P381