New exact solutions of nonlinear conformable time-fractional Phi-4 equation

被引:102
作者
Rezazadeh, Hadi [1 ]
Tariq, Hira [2 ]
Eslami, Mostafa [3 ]
Mirzazadeh, Mohammad [4 ]
Zhou, Qin [5 ]
机构
[1] Amol Univ Special Modern Technol, Fac Engn Technol, Amol, Iran
[2] GC Women Univ, Dept Math, Sialkot, Pakistan
[3] Univ Mazandaran, Fac Math Sci, Dept Math, Babol Sar, Iran
[4] Univ Guilan, Fac Technol & Engn, Dept Engn Sci, Rudsar Vajargah, Iran
[5] Wuhan Donghu Univ, Sch Elect & Informat Engn, Wuhan 430212, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlinear time-fractional Phi-4 equation; Conformable derivative; New extended direct algebraic method; New exact solutions; TRAVELING-WAVE SOLUTIONS; MODIFIED KUDRYASHOV METHOD; KLEIN-GORDON EQUATIONS; SOLITONS SOLUTIONS; OPTICAL SOLITONS; EVOLUTION; FORMS;
D O I
10.1016/j.cjph.2018.08.001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, new exact analytical solutions of time-fractional Phi-4 equation are developed using extended direct algebraic method by means of conformable fractional derivative. The obtained new results reveal that the proposed method is effective to studythe nonlinear dispersive equations in mathematical physics.
引用
收藏
页码:2805 / 2816
页数:12
相关论文
共 46 条
[1]  
Ablowitz M.J., 1991, NONLINEAR EVOLUTION, V149
[2]   Exact solutions to the Benney-Luke equation and the Phi-4 equations by using modified simple equation method [J].
Akter, Jesmin ;
Akbar, M. Ali .
RESULTS IN PHYSICS, 2015, 5 :125-130
[3]   Analytical solution of the time-fractional Phi-4 equation by using modified residual power series method [J].
Alquran, Marwan ;
Jaradat, H. M. ;
Syam, Muhammed I. .
NONLINEAR DYNAMICS, 2017, 90 (04) :2525-2529
[4]  
Aminikhah H., 2016, Sci Iran, V23, P1048, DOI DOI 10.24200/sci.2016.3873
[5]  
Ayati Z, 2017, Nonlinear Eng, V6, P25
[6]  
Bashir M.A, 2014, Appl. Math. Sci., V8, P3851
[7]   An efficient spectral collocation algorithm for nonlinear Phi-four equations [J].
Bhrawy, Ali H. ;
Assas, Laila M. ;
Alghamdi, Mohammed A. .
BOUNDARY VALUE PROBLEMS, 2013,
[8]   New exact solutions of Burgers' type equations with conformable derivative [J].
Cenesiz, Yucel ;
Baleanu, Dumitru ;
Kurt, Ali ;
Tasbozan, Orkun .
WAVES IN RANDOM AND COMPLEX MEDIA, 2017, 27 (01) :103-116
[9]  
Cheng YF, 2007, CHINESE J PHYS, V45, P480
[10]   PARTICLE SPECTRUM IN MODEL FIELD-THEORIES FROM SEMICLASSICAL FUNCTIONAL INTEGRAL TECHNIQUES [J].
DASHEN, RF ;
HASSLACHER, B ;
NEVEU, A .
PHYSICAL REVIEW D, 1975, 11 (12) :3424-3450