Small-scale characterisation of irradiated nuclear materials: Part II nanoindentation and micro-cantilever testing of ion irradiated nuclear materials

被引:86
作者
Armstrong, D. E. J. [1 ]
Hardie, C. D. [1 ,2 ]
Gibson, J. S. K. L. [1 ]
Bushby, A. J. [3 ]
Edmondson, P. D. [1 ]
Roberts, S. G. [1 ,2 ]
机构
[1] Univ Oxford, Dept Mat, Parks Rd, Oxford OX1 3PH, England
[2] EURATOM, CCFE Assoc, Abingdon OX14 3DB, Oxon, England
[3] Queen Mary Univ London, Sch Engn & Mat Sci, London E1 4NS, England
基金
英国工程与自然科学研究理事会;
关键词
FE-CR ALLOYS; FRACTURE-TOUGHNESS; COMPRESSION; CHALLENGES; TUNGSTEN; TEM;
D O I
10.1016/j.jnucmat.2015.01.053
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper demonstrates the ability of advanced micro-mechanical testing methods, based on FIB machined micro-cantilevers, to measure the mechanical properties of ion implanted layers without the influence of underlying unimplanted material. The first section describes a study of iron-12 wt% chromium alloy implanted with iron ions. It is shown that by careful cantilever design and finite element modelling that changes in yield stress after implantation can be measured even with the influence of a strong size effect. The second section describes a study of tungsten implanted with both tungsten ions and tungsten and helium ions using spherical and sharp nanoindentation, and micro-cantilevers. The spherical indentation allows yield properties and work hardening behaviour of the implanted layers to be measured. However the brittle nature of the implanted tungsten is only revealed when using micro-cantilevers. This demonstrates that when applying micro-mechanical methods to ion implanted layers care is needed to understand the nature of size effects, careful modelling of experimental procedure is required and multiple experimental techniques are needed to allow the maximum amount of mechanical behaviour information to be collected. (C) 2015 Published by Elsevier B.V.
引用
收藏
页码:374 / 381
页数:8
相关论文
共 46 条
  • [1] Effects of sequential tungsten and helium ion implantation on nano-indentation hardness of tungsten
    Armstrong, D. E. J.
    Edmondson, P. D.
    Roberts, S. G.
    [J]. APPLIED PHYSICS LETTERS, 2013, 102 (25)
  • [2] Hardening of self ion implanted tungsten and tungsten 5-wt% rhenium
    Armstrong, D. E. J.
    Yi, X.
    Marquis, E. A.
    Roberts, S. G.
    [J]. JOURNAL OF NUCLEAR MATERIALS, 2013, 432 (1-3) : 428 - 436
  • [3] Micro-mechanical measurements of fracture toughness of bismuth embrittled copper grain boundaries
    Armstrong, D. E. J.
    Wilkinson, A. J.
    Roberts, S. G.
    [J]. PHILOSOPHICAL MAGAZINE LETTERS, 2011, 91 (06) : 394 - 400
  • [4] Measuring anisotropy in Young's modulus of copper using microcantilever testing
    Armstrong, David E. J.
    Wilkinson, Angus J.
    Roberts, Steve G.
    [J]. JOURNAL OF MATERIALS RESEARCH, 2009, 24 (11) : 3268 - 3276
  • [5] Nanoindentation investigation of ion-irradiated Fe-Cr alloys using spherical indenters
    Bushby, Andrew J.
    Roberts, Steve G.
    Hardie, Christopher D.
    [J]. JOURNAL OF MATERIALS RESEARCH, 2012, 27 (01) : 85 - 90
  • [6] Comparison of instrumented Knoop and Vickers hardness measurements on various soft materials and hard ceramics
    Chicot, D.
    Mercier, D.
    Roudet, F.
    Silva, K.
    Staia, M. H.
    Lesage, J.
    [J]. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2007, 27 (04) : 1905 - 1911
  • [7] Computational modeling of the forward and reverse problems in instrumented sharp indentation
    Dao, M
    Chollacoop, N
    Van Vliet, KJ
    Venkatesh, TA
    Suresh, S
    [J]. ACTA MATERIALIA, 2001, 49 (19) : 3899 - 3918
  • [8] Measuring fracture toughness of coatings using focused-ion-beam-machined microbeams
    Di Maio, D
    Roberts, SG
    [J]. JOURNAL OF MATERIALS RESEARCH, 2005, 20 (02) : 299 - 302
  • [9] How oxidized grain boundaries fail
    Dugdale, Helen
    Armstrong, David E. J.
    Tarleton, Edmund
    Roberts, Steve G.
    Lozano-Perez, Sergio
    [J]. ACTA MATERIALIA, 2013, 61 (13) : 4707 - 4713
  • [10] Edmondson P. D., 2015, J NUCL MAT