Denoising influence on discrete frequency classification results for quantum cascade laser based infrared microscopy

被引:10
作者
Koziol, Paulina [1 ]
Raczkowska, Magda K. [1 ,2 ]
Skibinska, Justyna [1 ,3 ]
McCollum, Nicholas J. [4 ]
Urbaniak-Wasik, Slawka [5 ]
Paluszkiewicz, Czeslawa [1 ]
Kwiatek, Wojciech M. [1 ]
Wrobel, Tomasz P. [1 ]
机构
[1] Polish Acad Sci, Inst Nucl Phys, PL-31342 Krakow, Poland
[2] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Mickiewicza 30, Krakow, Poland
[3] AGH Univ Sci & Technol, Fac Elect Engn Automat Comp Sci & Biomed Engn, Mickiewicza 30, Krakow, Poland
[4] DRS Daylight Solut, 15378 Ave Sci,Suite 200, San Diego, CA USA
[5] NZOZ Pathol Dept, Jagiellonska 70, Kielce, Poland
关键词
Quantum cascade laser; PCA; MNF; Deep neural network; Wavelets; Random forest; SPECTROSCOPY;
D O I
10.1016/j.aca.2018.11.032
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Currently, there is great interest in bringing the application of IR spectroscopy into the clinic. This however will require a significant reduction in measurement time as Fourier Transform Infrared (FT-IR) imaging takes hours to days to scan a clinically relevant specimen. A potential remedy for this issue is the use of Quantum Cascade Laser Infrared (QCL IR) microscopy performed in Discrete Frequency (DF) mode for maximum speed gain. This gain could be furthermore improved by applying a proper denoising algorithm that takes into account the specific data structure. We have recently compared spectral and spatial denoising techniques in the context of Fourier Transform IR (FT-IR) imaging and showed that the optimal methods depend heavily on the exact data structure. In general multivariate denoising methods such as Principal Component Analysis (PCA) and Minimum Noise Fraction (MNF) are the most effective for a dataset containing multiple bands. Histologic classification of QCL IR images of pancreatic tissue using Random Forest was therefore performed to investigate which denoising schemes are the most optimal for such experimental data structure. This work is the first to show the effects of denoising on classification accuracy of QCL data and is likely to be transferable to other QCL microscopes and other modalities using DF imaging, e.g. AFM-IR or CARS/SRS imaging. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:24 / 31
页数:8
相关论文
共 28 条
  • [1] Using Fourier transform IR spectroscopy to analyze biological materials
    Baker, Matthew J.
    Trevisan, Julio
    Bassan, Paul
    Bhargava, Rohit
    Butler, Holly J.
    Dorling, Konrad M.
    Fielden, Peter R.
    Fogarty, Simon W.
    Fullwood, Nigel J.
    Heys, Kelly A.
    Hughes, Caryn
    Lasch, Peter
    Martin-Hirsch, Pierre L.
    Obinaju, Blessing
    Sockalingum, Ganesh D.
    Sule-Suso, Josep
    Strong, Rebecca J.
    Walsh, Michael J.
    Wood, Bayden R.
    Gardner, Peter
    Martin, Francis L.
    [J]. NATURE PROTOCOLS, 2014, 9 (08) : 1771 - 1791
  • [2] SIproc: an open-source biomedical data processing platform for large hyperspectral images
    Berisha, Sebastian
    Chang, Shengyuan
    Saki, Sam
    Daeinejad, Davar
    He, Ziqi
    Mankar, Rupali
    Mayerich, David
    [J]. ANALYST, 2017, 142 (08) : 1350 - 1357
  • [3] Characterization of the structure of low-e substrates and consequences for IR transflection measurements
    DeVetter, Brent M.
    Kenkel, Seth
    Mittal, Shachi
    Bhargava, Rohit
    Wrobel, Tomasz P.
    [J]. VIBRATIONAL SPECTROSCOPY, 2017, 91 : 119 - 127
  • [4] Infrared spectroscopy and spectroscopic imaging in forensic science
    Ewing, Andrew V.
    Kazarian, Sergei G.
    [J]. ANALYST, 2017, 142 (02) : 257 - 272
  • [5] A TRANSFORMATION FOR ORDERING MULTISPECTRAL DATA IN TERMS OF IMAGE QUALITY WITH IMPLICATIONS FOR NOISE REMOVAL
    GREEN, AA
    BERMAN, M
    SWITZER, P
    CRAIG, MD
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1988, 26 (01): : 65 - 74
  • [6] Real-time mid-infrared imaging of living microorganisms
    Haase, Katharina
    Kroeger-Lui, Niels
    Pucci, Annemarie
    Schoenhals, Arthur
    Petrich, Wolfgang
    [J]. JOURNAL OF BIOPHOTONICS, 2016, 9 (1-2) : 61 - 66
  • [7] Mid-IR hyperspectral imaging for label-free histopathology and cytology
    Hermes, M.
    Morrish, R. Brandstrup
    Huot, L.
    Meng, L.
    Junaid, S.
    Tomko, J.
    Lloyd, G. R.
    Masselink, W. T.
    Tidemand-Lichtenberg, P.
    Pedersen, C.
    Palombo, F.
    Stone, N.
    [J]. JOURNAL OF OPTICS, 2018, 20 (02)
  • [8] Using random forest to classify T-cell epitopes based on amino acid properties and molecular features
    Huang, Jian-Hua
    Xie, Hua-Lin
    Yan, Jun
    Lu, Hong-Mei
    Xu, Qing-Song
    Liang, Yi-Zeng
    [J]. ANALYTICA CHIMICA ACTA, 2013, 804 : 70 - 75
  • [9] Spectroscopic imaging of biomaterials and biological systems with FTIR microscopy or with quantum cascade lasers
    Kimber, James A.
    Kazarian, Sergei G.
    [J]. ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2017, 409 (25) : 5813 - 5820
  • [10] Comparison of spectral and spatial denoising techniques in the context of High Definition FT-IR imaging hyperspectral data
    Koziol, Paulina
    Raczkowska, Magda K.
    Skibinska, Justyna
    Urbaniak-Wasik, Slawka
    Paluszkiewicz, Czeslawa
    Kwiatek, Wojciech
    Wrobel, Tomasz P.
    [J]. SCIENTIFIC REPORTS, 2018, 8