CLASSIFICATION OF MULTITEMPORAL SAR IMAGES USING CONVOLUTIONAL NEURAL NETWORKS AND MARKOV RANDOM FIELDS

被引:0
|
作者
Danilla, Carolyne [1 ]
Persello, Claudio [1 ]
Tolpekin, Valentyn [1 ]
Bergado, John Ray [1 ]
机构
[1] Univ Twente, ITC Fac, Dept Earth Observat Sci, Enschede, Netherlands
来源
2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) | 2017年
关键词
Convolutional neural networks; synthetic aperture radar; image classification; speckle filtering; Sentinel-1;
D O I
暂无
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Classification of Synthetic Aperture Radar (SAR) images is a complex task because of the presence of speckle, which affects images in a way similar to a strong noise. In this study, we investigate the use of Convolutional Neural Networks (CNNs) which can effectively learn a bank of spatial filters to simultaneously 1) reduce speckle noise, and 2) extract spatial-contextual features to characterize texture and scattering mechanism. Moreover, we combine CNN with Markov Random Fields (MRFs) for post-classification label smoothing to further reduce the effect of speckle on the landcover map and to improve classification accuracy. We applied the proposed classification system to the analysis of a multitemporal series of Sentinel-1 images for mapping agricultural fields in Flevoland, The Netherlands. Experimental results confirm the effectiveness of the investigated approach, which outperforms standard methods.
引用
收藏
页码:2231 / 2234
页数:4
相关论文
共 50 条
  • [41] Automatic classification of images with beach linear perspective using convolutional neural networks
    Santos-Romero, Martin
    Arellano-Verdejo, Javier
    Lazcano-Hernandez, Hugo E.
    Damian Reyes, Pedro
    2022 IEEE MEXICAN INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE (ENC), 2022,
  • [42] Classification of Breast Cancer Based on Histology Images Using Convolutional Neural Networks
    Bardou, Dalal
    Zhang, Kun
    Ahmad, Sayed Mohammad
    IEEE ACCESS, 2018, 6 : 24680 - 24693
  • [43] Fusion of time-series optical and SAR images using 3D convolutional neural networks for crop classification
    Teimouri, Maryam
    Mokhtarzade, Mehdi
    Baghdadi, Nicolas
    Heipke, Christian
    GEOCARTO INTERNATIONAL, 2022, 37 (27) : 15143 - 15160
  • [44] Classification of Breast Cancer Histopathological Images using Convolutional Neural Networks with Hierarchical Loss and Global Pooling
    Wang, Zeya
    Dong, Nanqing
    Dai, Wei
    Rosario, Sean D.
    Xing, Eric P.
    IMAGE ANALYSIS AND RECOGNITION (ICIAR 2018), 2018, 10882 : 745 - 753
  • [45] Feature extraction and classification of VHR images with attribute profiles and convolutional neural networks
    Tian Tian
    Lang Gao
    Weijing Song
    Kim-Kwang Raymond Choo
    Jijun He
    Multimedia Tools and Applications, 2018, 77 : 18637 - 18656
  • [46] Snow Avalanche Segmentation in SAR Images With Fully Convolutional Neural Networks
    Bianchi, Filippo Maria
    Grahn, Jakob
    Eckerstorfer, Markus
    Malnes, Eirik
    Vickers, Hannah
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 75 - 82
  • [47] Feature extraction and classification of VHR images with attribute profiles and convolutional neural networks
    Tian, Tian
    Gao, Lang
    Song, Weijing
    Choo, Kim-Kwang Raymond
    He, Jijun
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (14) : 18637 - 18656
  • [48] Classification of Cancer Microscopic Images via Convolutional Neural Networks
    Khan, Mohammad Azam
    Choo, Jaegul
    ISBI 2019 C-NMC CHALLENGE: CLASSIFICATION IN CANCER CELL IMAGING, 2019, : 141 - 147
  • [49] Smart feature extraction and classification of hyperspectral images based on convolutional neural networks
    Hamouda, Maissa
    Ettabaa, Karim Saheb
    Bouhlel, Med Salim
    IET IMAGE PROCESSING, 2020, 14 (10) : 1999 - 2005
  • [50] Plant Classification using Convolutional Neural Networks
    Yalcin, Hulya
    Razavi, Salar
    2016 FIFTH INTERNATIONAL CONFERENCE ON AGRO-GEOINFORMATICS (AGRO-GEOINFORMATICS), 2016, : 233 - 237