CLASSIFICATION OF MULTITEMPORAL SAR IMAGES USING CONVOLUTIONAL NEURAL NETWORKS AND MARKOV RANDOM FIELDS

被引:0
|
作者
Danilla, Carolyne [1 ]
Persello, Claudio [1 ]
Tolpekin, Valentyn [1 ]
Bergado, John Ray [1 ]
机构
[1] Univ Twente, ITC Fac, Dept Earth Observat Sci, Enschede, Netherlands
来源
2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) | 2017年
关键词
Convolutional neural networks; synthetic aperture radar; image classification; speckle filtering; Sentinel-1;
D O I
暂无
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Classification of Synthetic Aperture Radar (SAR) images is a complex task because of the presence of speckle, which affects images in a way similar to a strong noise. In this study, we investigate the use of Convolutional Neural Networks (CNNs) which can effectively learn a bank of spatial filters to simultaneously 1) reduce speckle noise, and 2) extract spatial-contextual features to characterize texture and scattering mechanism. Moreover, we combine CNN with Markov Random Fields (MRFs) for post-classification label smoothing to further reduce the effect of speckle on the landcover map and to improve classification accuracy. We applied the proposed classification system to the analysis of a multitemporal series of Sentinel-1 images for mapping agricultural fields in Flevoland, The Netherlands. Experimental results confirm the effectiveness of the investigated approach, which outperforms standard methods.
引用
收藏
页码:2231 / 2234
页数:4
相关论文
共 50 条
  • [21] Convolutional neural networks applied to classification of nanoparticles and nanotubes images
    Quintero-Lopez, Luis A.
    Caro-Gutierrez, Jesus
    Gonzalez-Navarro, Felix F.
    Curiel-Alvarez, Mario A.
    Perez-Landeros, Oscar M.
    Radnev-Nedev, Nicola
    2023 MEXICAN INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE, ENC, 2024,
  • [22] Clothing Classification Using Convolutional Neural Networks
    Hodecker, Andrei
    Fernandes, Anita M. R.
    Steffens, Alisson
    Crocker, Paul
    Leithardt, Valderi R. Q.
    2020 15TH IBERIAN CONFERENCE ON INFORMATION SYSTEMS AND TECHNOLOGIES (CISTI'2020), 2020,
  • [23] Convolutional Fuzzy Neural Networks With Random Weights for Image Classification
    Wang, Yifan
    Ishibuchi, Hisao
    Pedrycz, Witold
    Zhu, Jihua
    Cao, Xiangyong
    Wang, Jun
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (05): : 3279 - 3293
  • [24] Classification of Tumor Regions in Histopathological Images Using Convolutional Neural Networks
    Gunduz, Koray
    Albayrak, Abdulkadir
    Bilgin, Gokhan
    Karsligil, M. Elif
    2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,
  • [25] Multi-label classification of line chart images using convolutional neural networks
    Kosemen, Cem
    Birant, Derya
    SN APPLIED SCIENCES, 2020, 2 (07):
  • [26] Multi-label classification of line chart images using convolutional neural networks
    Cem Kosemen
    Derya Birant
    SN Applied Sciences, 2020, 2
  • [27] Classification of Blood Cancer Images Using a Convolutional Neural Networks Ensemble
    Ma, Kaiqiang
    Sun, Lingling
    Wang, Yaqi
    Wang, Junchao
    ELEVENTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2019), 2019, 11179
  • [28] Classification of Diabetic Rat Histopathology Images Using Convolutional Neural Networks
    Yurttakal, Ahmet Hasim
    Erbay, Hasan
    Cinarer, Gokalp
    Bas, Hatice
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2021, 14 (01) : 715 - 722
  • [29] Weather Classification using Convolutional Neural Networks
    An, Jehong
    Chen, Yunfan
    Shin, Hyunchul
    2018 INTERNATIONAL SOC DESIGN CONFERENCE (ISOCC), 2018, : 245 - 246
  • [30] Classification of Primary Cilia in Microscopy Images Using Convolutional Neural Random Forests
    Ram, Sundaresh
    Majdi, Mohammed S.
    Rodriguez, Jeffrey J.
    Gao, Yang
    Brooks, Heddwen L.
    2018 IEEE SOUTHWEST SYMPOSIUM ON IMAGE ANALYSIS AND INTERPRETATION (SSIAI), 2018, : 89 - 92