The application of Weierstrass elliptic functions to Schwarzschild null geodesics

被引:90
作者
Gibbons, G. W. [1 ,2 ]
Vyska, M. [2 ]
机构
[1] Univ Cambridge, DAMTP, Cambridge CB3 0WA, England
[2] Univ Cambridge Trinity Coll, Cambridge CB2 1TQ, England
关键词
D O I
10.1088/0264-9381/29/6/065016
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper, we focus on analytical calculations involving null geodesics in some spherically symmetric spacetimes. We use Weierstrass elliptic functions to fully describe null geodesics in Schwarzschild spacetime and to derive analytical formulae connecting the values of radial distance at different points along the geodesic. We then study the properties of light triangles in Schwarzschild spacetime and give the expansion of the deflection angle to the second order in both M/r(0) and M/b where M is the mass of the black hole, r(0) the distance of the closest approach of the light ray and b the impact parameter. We also use the Weierstrass function formalism to analyze other more exotic cases such as Reissner-Nordstrom null geodesics and Schwarzschild null geodesics in four and six spatial dimensions. Finally we apply Weierstrass functions to describe the null geodesics in the Ellis wormhole spacetime and give an analytic expansion of the deflection angle in M/b.
引用
收藏
页数:19
相关论文
共 18 条
  • [1] Arnold V. I., 1990, SERIES MODERN MATH S
  • [2] A dynamical system's approach to Schwarzschild null geodesics
    Belbruno, Edward
    Pretorius, Frans
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2011, 28 (19)
  • [3] Bohlin K., 1911, Bull. Astron, V28, P113, DOI [DOI 10.3406/BASTR.1911.12893, 10.3406/bastr.1911.12893]
  • [4] Cruz N, 2009, ARXIV11110924GRQC
  • [5] Dabrowski M, 1995, ASTROPHYS SPACES S D, V139, pD
  • [6] Gravitational lensing by wormholes
    Dey, Tushar Kanti
    Sen, Surajit
    [J]. MODERN PHYSICS LETTERS A, 2008, 23 (13) : 953 - 962
  • [7] Applications of the Gauss-Bonnet theorem to gravitational lensing
    Gibbons, G. W.
    Werner, M. C.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2008, 25 (23)
  • [8] Light bending in Schwarzschild-de Sitter: projective geometry of the optical metric
    Gibbons, G. W.
    Warnick, C. M.
    Werner, M. C.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2008, 25 (24)
  • [9] Geodesics of electrically and magnetically charged test particles in the Reissner-Nordstrom space-time: Analytical solutions
    Grunau, Saskia
    Kagramanova, Valeria
    [J]. PHYSICAL REVIEW D, 2011, 83 (04):
  • [10] Complete set of solutions of the geodesic equation in the space-time of a Schwarzschild black hole pierced by a cosmic string
    Hackmann, Eva
    Hartmann, Betti
    Laemmerzahl, Claus
    Sirimachan, Parinya
    [J]. PHYSICAL REVIEW D, 2010, 81 (06)