Topological generators of abelian Lie groups and hypercyclic finitely generated abelian semigroups of matrices

被引:17
作者
Abels, Herbert [1 ]
Manoussos, Antonios [1 ]
机构
[1] Univ Bielefeld, Fak Math, SFB 701, D-33501 Bielefeld, Germany
关键词
Topological generator; Lie group; Hypercyclic semigroup of matrices; DENSE ORBITS; TUPLES;
D O I
10.1016/j.aim.2011.11.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we bring together results about the density of subsemigroups of abelian Lie groups, the minimal number of topological generators of abelian Lie groups and a result about actions of algebraic groups. We find the minimal number of generators of a finitely generated abelian semigroup or group of matrices with a dense or a somewhere dense orbit by computing the minimal number of generators of a dense subsemigroup (or subgroup) of the connected component of the identity of its Zariski closure. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1862 / 1872
页数:11
相关论文
共 15 条
[1]   Generating semisimple groups by tori [J].
Abels, H. ;
Vinberg, E. B. .
JOURNAL OF ALGEBRA, 2011, 328 (01) :114-121
[2]  
Abels H., LINEAR SEMIGROUPS CO
[3]  
Ayadi A, 2005, GEOMETRIAE DEDICATA, V116, P111, DOI 10.1007/s10711-005-9007-2
[4]  
Ayadi A, 2011, APPL GEN TOPOL, V12, P35
[5]  
Ayadi Adlene., 2006, FOLIATIONS 2005, P47
[6]  
Bayart F., 2009, CAMB TRACT MATH, V179
[7]   HOMOMORPHISM ABSTRACTS OF SIMPLE ALGEBRAIC GROUPS [J].
BOREL, A ;
TITS, J .
ANNALS OF MATHEMATICS, 1973, 97 (03) :499-571
[8]   On the minimal number of matrices which form a locally hypercyclic, non-hypercyclic tuple [J].
Costakis, G. ;
Hadjiloucas, D. ;
Manoussos, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 365 (01) :229-237
[9]  
Costakis G, 2009, P AM MATH SOC, V137, P1025
[10]  
COSTAKIS G, ARXIV10035321