A characterization of some classes of harmonic functions

被引:0
|
作者
Stevic, Stevo [1 ]
机构
[1] Serbian Acad Sci, Math Inst, Belgrade 11000, Serbia
关键词
harmonic functions; Hardy-Orlicz space; Bergman-Orlicz space; Lusin property;
D O I
10.1007/s00009-008-0136-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate harmonic Hardy-Orlicz; H-phi(B) and Bergman-Orlicz b(phi,alpha)(B) spaces, using an identity of Hardy-Stein type. We also extend the notion of the Lusin property by introducing (phi,alpha)-Lusin property with respect to a Stoltz domain. The main result in the paper is as follows: Let alpha is an element of[ - 1, infinity), phi be a nonnegative increasing convex function twice differentiable on (0, infinity), and u a harmonic function on the unit ball B in R-n. Then the following statements are equivalent: (a) u is an element of b(phi,alpha) (B), if alpha is an element of ( - 1, infinity). u is an element of H-phi(B) if alpha = - 1. (b) integral(B) phi ''(vertical bar u(x)vertical bar)vertical bar del u(x)vertical bar(2)(1 - vertical bar x vertical bar)(alpha+2) dV(x) < +infinity. (c) u has (phi, alpha)-Lusin property with respect to a Stoltz domain with halfangle beta, for any beta is an element of (0, pi/2). (d) u has (phi, alpha)-Lusin property with respect to a Stoltz domain with halfangle beta, for some beta is an element of (0, pi/2).
引用
收藏
页码:61 / 76
页数:16
相关论文
共 50 条
  • [1] A Characterization of Some Classes of Harmonic Functions
    Stevo Stević
    Mediterranean Journal of Mathematics, 2008, 5 : 61 - 76
  • [2] Some classes of harmonic functions on vector bundles
    Mohamed Tahar Kadaoui Abbassi
    Ibrahim Lakrini
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2023, 64 : 175 - 196
  • [3] Some classes of harmonic functions on vector bundles
    Abbassi, Mohamed Tahar Kadaoui
    Lakrini, Ibrahim
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2023, 64 (01): : 175 - 196
  • [4] On Some Classes of Harmonic Functions Associated with the Janowski Function
    Ma, Lina
    Li, Shuhai
    Tang, Huo
    MATHEMATICS, 2023, 11 (17)
  • [5] EPSILON-ENTROPY OF SOME CLASSES OF HARMONIC FUNCTIONS
    TANAKA, S
    PROCEEDINGS OF THE JAPAN ACADEMY, 1963, 39 (02): : 85 - &
  • [6] SOME NEW CLASSES OF HARMONIC CONVEX FUNCTIONS AND INEQUALITIES
    Noor, Muhammad Aslam
    Noor, Khalida Inayat
    Iftikhar, Sabah
    Awan, Muhammad Uzair
    PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2018, 44 (02): : 250 - 266
  • [7] FREE INTERPOLATION IN SOME CLASSES OF HARMONIC-FUNCTIONS
    TOLOKONNIKOV, VA
    VESTNIK LENINGRADSKOGO UNIVERSITETA SERIYA MATEMATIKA MEKHANIKA ASTRONOMIYA, 1986, (04): : 93 - 97
  • [8] On some classes of harmonic functions with nonnegative harmonic majorants in the half-plane
    A. M. Jerbashian
    J. E. Restrepo
    Journal of Contemporary Mathematical Analysis, 2016, 51 : 79 - 89
  • [9] On some classes of harmonic functions with nonnegative harmonic majorants in the half-plane
    Jerbashian, A. M.
    Restrepo, J. E.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2016, 51 (02): : 79 - 89
  • [10] Uniformly distributed ridge approximation of some classes of harmonic functions
    V. F. Babenko
    D. A. Levchenko
    Ukrainian Mathematical Journal, 2013, 64 : 1621 - 1626