Lattice Boltzmann simulation of gas-solid heat transfer in random assemblies of spheres: The effect of solids volume fraction on the average Nusselt number for Re ≤ 100

被引:36
作者
Chen, Y. [1 ]
Mueller, C. R. [1 ]
机构
[1] Swiss Fed Inst Technol, Lab Energy Sci & Engn, Dept Mech & Proc Engn, Leonhardstr 21, CH-8092 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
Thermal lattice Boltzmann method; Immersed moving boundary condition; Nusselt number correlation; Packed bed; Heat transfer; DIRECT NUMERICAL-SIMULATION; DRAG FORCE CORRELATION; TRANSFER COEFFICIENTS; RANDOM ARRAYS; CUBIC PARTICLES; PACKED-BEDS; FLOW; REYNOLDS; MASS;
D O I
10.1016/j.cej.2018.10.182
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A thermal lattice Boltzmann method has been applied to simulate gas-solid heat transfer in a random assembly of spheres using an immersed moving boundary approach. The numerical data was correlated to propose an expression for the Nusselt number as a function of the Reynolds number and solid volume fraction over a wide range of solid volume fractions (phi = [0, 0.5]) for Reynolds numbers up to 100. It is hoped that the new Nusselt number correlation for gas-solid systems improves the accuracy of Euler-Euler and Euler-Lagrangian simulations of gas-solid heat transfer in packed and fluidized beds.
引用
收藏
页码:1392 / 1399
页数:8
相关论文
共 34 条
[1]   Drag force of intermediate Reynolds number flow past mono- and bidisperse arrays of spheres [J].
Beetstra, R. ;
van der Hoef, M. A. ;
Kuipers, J. A. M. .
AICHE JOURNAL, 2007, 53 (02) :489-501
[2]   Development of a drag force correlation for assemblies of cubic particles: The effect of solid volume fraction and Reynolds number [J].
Chen, Y. ;
Mueller, C. R. .
CHEMICAL ENGINEERING SCIENCE, 2018, 192 :1157-1166
[3]   A drag force correlation for approximately cubic particles constructed from identical spheres [J].
Chen, Y. ;
Third, J. R. ;
Mueller, C. R. .
CHEMICAL ENGINEERING SCIENCE, 2015, 123 :146-154
[4]  
Chen Y., 2017, DIRICHLET BOUN UNPUB
[5]   Review of direct numerical simulation of fluid-particle mass, momentum and heat transfer in dense gas-solid flows [J].
Deen, Niels G. ;
Peters, E. A. J. F. ;
Padding, Johan T. ;
Kuipers, J. A. M. .
CHEMICAL ENGINEERING SCIENCE, 2014, 116 :710-724
[6]   Direct numerical simulation of flow and heat transfer in dense fluid-particle systems [J].
Deen, Niels G. ;
Kriebitzsch, Sebastian H. L. ;
van der Hoef, Martin A. ;
Kuipers, J. A. M. .
CHEMICAL ENGINEERING SCIENCE, 2012, 81 :329-344
[7]   Direct numerical simulation of heat and mass transfer of spheres in a fluidized bed [J].
Feng, Zhi-Gang ;
Musong, Samuel Gem .
POWDER TECHNOLOGY, 2014, 262 :62-70
[8]   Inclusion of heat transfer computations for particle laden flows [J].
Feng, Zhi-Gang ;
Michaelides, Efstathios E. .
PHYSICS OF FLUIDS, 2008, 20 (04)
[9]  
Frenkel D., 1996, UNDERSTANDING MOL SI
[10]  
Froessling N., 1938, GERL BEITR GEOPHYS, V52, P170