Nowhere holderian functions and Pringsheim singular functions in the disc algebra

被引:3
作者
Bernal-Gonzalez, L. [1 ]
Bonilla, A. [2 ]
Lopez-Salazar, J. [3 ]
Seoane-Sepulveda, J. B. [4 ]
机构
[1] Univ Seville, Fac Matemat, Dept Anal Matemat, Ave Reina Mercedes, E-41080 Seville, Spain
[2] Univ La Laguna, Dept Anal Matemat, San Cristobal la Laguna 38271, Spain
[3] Univ Politecn Madrid, Escuela Tecn Super Ingn & Sistemas Telecomunicac, Dept Matemat Aplicada Tecnol Informac & Comunicac, Carretera Valencia,Km 7, Madrid 28031, Spain
[4] Univ Complutense Madrid, Fac Ciencias Matemat, IMI, Plaza Ciencias 3, E-28040 Madrid, Spain
来源
MONATSHEFTE FUR MATHEMATIK | 2019年 / 188卷 / 04期
关键词
Nowhere holderian function; Pringsheim singular function; Disc algebra; Lineability; Spaceability; Algebrability; WEIGHTED SPACES; LINEABILITY;
D O I
10.1007/s00605-018-1185-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the existence of dense linear subspaces, of infinitely generated subalgebras and of infinite dimensional Banach spaces in the disc algebra all of whose nonzero members are not -holderian at any point of the unit circle for any >0. This completes the recently established result of topological genericity of this kind of functions, as well as the corresponding lineability statements about functions that are nowhere differentiable at the boundary. Topological and algebraic genericity is also studied for the family of boundary-smooth holomorphic functions that are Pringsheim singular at any point of the unit circle.
引用
收藏
页码:591 / 609
页数:19
相关论文
共 57 条
[1]  
Ahlfors L., 1979, Complex Analysis, V3rd
[2]   Linear structure of sets of divergent sequences and series [J].
Aizpuru, A. ;
Perez-Eslava, C. ;
Seoane-Sepulveda, J. B. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 418 (2-3) :595-598
[3]  
[Anonymous], 1931, STUD MATH
[4]  
[Anonymous], 1931, Stud. Math., DOI DOI 10.4064/SM-3-1-174-179
[5]  
Aron R., 2016, Monographs and Research Notes in Mathematics
[6]   On dense-lineability of sets of functions on R [J].
Aron, R. M. ;
Garcia-Pacheco, F. J. ;
Perez-Garcia, D. ;
Seoane-Sepulveda, J. B. .
TOPOLOGY, 2009, 48 (2-4) :149-156
[7]   Algebrability of the set of non-convergent Fourier series [J].
Aron, Richard M. ;
Perez-Garcia, David ;
Seoane-Sepulveda, Juan B. .
STUDIA MATHEMATICA, 2006, 175 (01) :83-90
[8]  
ARON RM, 2003, PROC AM MATH SOC, V133, P795
[9]  
Auerbach H, 1931, STUD MATH, V3, P180
[10]   Nonseparable spaceability and strong algebrability of sets of continuous singular functions [J].
Balcerzak, Marek ;
Bartoszewicz, Artur ;
Filipczak, Malgorzata .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 407 (02) :263-269