Approximate Solution to the Fractional Second-Type Lane-Emden Equation

被引:16
作者
Abdel-Salam, E. A-B [1 ,2 ]
Nouh, M. I. [1 ,3 ]
机构
[1] Northern Border Univ, Fac Sci, Ar Ar, Saudi Arabia
[2] Assiut Univ, Fac Sci, New Valley Branch, El Kharja, Egypt
[3] Natl Res Inst Astron & Geophys, Cairo, Egypt
关键词
isothermal gas sphere: fractal index: nonlinear fractional differential equation: modified Riemann-Liouville derivative; CALCULUS;
D O I
10.1007/s10511-016-9445-6
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The spherical isothermal Lane-Emden equation is a second-order nonlinear differential equation that models many configurations in astrophysics. Using the fractal index technique and the power series expansion, we solve the fractional Lane-Emden equation involving the modified Riemann-Liouville derivative. The results indicate that the series converges over the range of radii 0aecurrency signx < 2200 for a wide spread of values for the fractional parameter alpha. Comparison with the numerical solution reveals good agreement with a maximum relative error of 0.05.
引用
收藏
页码:398 / 410
页数:13
相关论文
共 28 条
[1]   Solution of Moving Boundary Space-Time Fractional Burger's Equation [J].
Abdel-Salam, E. A-B ;
Yousif, E. A. ;
Arko, Y. A. S. ;
Gumma, E. A. E. .
JOURNAL OF APPLIED MATHEMATICS, 2014,
[2]   Analytic Solutions of the Space-Time Fractional Combined KdV-mKdV Equation [J].
Abdel-Salam, Emad A. -B. ;
Al-Muhiameed, Zeid I. A. .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
[3]   Analytical solution of nonlinear space-time fractional differential equations using the improved fractional Riccati expansion method [J].
Abdel-Salam, Emad A-B. ;
Gumma, Elzain A. E. .
AIN SHAMS ENGINEERING JOURNAL, 2015, 6 (02) :613-620
[4]  
[Anonymous], 2000, Applications of Fractional Calculus in Physics
[5]  
[Anonymous], ASTROPH150403450
[6]  
[Anonymous], ASTROPHYSICS SPACE S
[7]  
[Anonymous], 1993, INTRO FRACTIONAL CA
[8]  
Binney J., 2008, Galactic Dynamics, V2, DOI DOI 10.1515/9781400828722
[9]  
Diethelm K., 2010, LECT NOTES MATH
[10]   Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus [J].
He, Ji-Huan ;
Elagan, S. K. ;
Li, Z. B. .
PHYSICS LETTERS A, 2012, 376 (04) :257-259