X2 VVER-1000 benchmark revision: Fresh HZP core state and the reference Monte Carlo solution

被引:26
作者
Bilodid, Yuri [1 ]
Fridman, Emil [1 ]
Loetsch, Thomas [2 ]
机构
[1] Helmholtz Zentrum Dresden Rossendorf, Dresden, Germany
[2] TUV SUD Ind Serv GmbH, Munich, Germany
关键词
X2; benchmark; VVER-1000; Serpent;
D O I
10.1016/j.anucene.2020.107558
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The X2 VVER-1000 benchmark provides a unique set of the operational data of a VVER-1000 reactor. This includes fresh core hot zero power (HZP) experiments, operational history of first four fuel cycles, and information on the operational transients occurred on the unit during first cycles. Since a publication of the initial versions of the benchmark, numerous updates, corrections and refinements become available. The current paper is a first in a series of publications on the revised X2 VVER-1000 benchmark. It is dedicated to the fresh core HZP experiments and includes description of the fuel and core geometries, the material compositions, description and results of the measurements taken during fresh core startup. In addition, the paper includes the reference Monte Carlo solution for the HZP experiments obtained with Serpent 2. The calculated and measured values are in a good agreement. Further extension of the benchmark definition is foreseen in the near future. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:14
相关论文
共 18 条
[1]  
Afanasiev D., 2014, P 24 S AER VVER REAC
[2]   SIMULATE5-HEX extension for VVER analyses [J].
Bahadir, T. .
KERNTECHNIK, 2018, 83 (04) :268-274
[3]   Simulation of VVER-1000 startup physics tests using the MCU Monte Carlo code [J].
Bikeev, Artem ;
Kalugin, Mikhail ;
Shcherenko, Anna ;
Shkarovsky, Denis .
ANNALS OF NUCLEAR ENERGY, 2018, 117 :60-66
[4]   The HEXNEM3 nodal flux expansion method for the hexagonal geometry in the code DYN3D [J].
Bilodid, Yuri ;
Grundmann, Ulrich ;
Kliem, Soeren .
ANNALS OF NUCLEAR ENERGY, 2018, 116 :187-194
[5]   ENDF/B-VII.0: Next generation evaluated nuclear data library for nuclear science and technology [J].
Chadwick, M. B. ;
Oblozinsky, P. ;
Herman, M. ;
Greene, N. M. ;
McKnight, R. D. ;
Smith, D. L. ;
Young, P. G. ;
MacFarlane, R. E. ;
Hale, G. M. ;
Frankle, S. C. ;
Kahler, A. C. ;
Kawano, T. ;
Little, R. C. ;
Madland, D. G. ;
Moller, P. ;
Mosteller, R. D. ;
Page, P. R. ;
Talou, P. ;
Trellue, H. ;
White, M. C. ;
Wilson, W. B. ;
Arcilla, R. ;
Dunford, C. L. ;
Mughabghab, S. F. ;
Pritychenko, B. ;
Rochman, D. ;
Sonzogni, A. A. ;
Lubitz, C. R. ;
Trumbull, T. H. ;
Weinman, J. P. ;
Brown, D. A. ;
Cullen, D. E. ;
Heinrichs, D. P. ;
McNabb, D. P. ;
Derrien, H. ;
Dunn, M. E. ;
Larson, N. M. ;
Leal, L. C. ;
Carlson, A. D. ;
Block, R. C. ;
Briggs, J. B. ;
Cheng, E. T. ;
Huria, H. C. ;
Zerkle, M. L. ;
Kozier, K. S. ;
Courcelle, A. ;
Pronyaev, V. ;
van der Marck, S. C. .
NUCLEAR DATA SHEETS, 2006, 107 (12) :2931-3059
[6]  
Cullen D.E., 2003, UCRLTR201506 LLNL
[7]  
Ivanov B., 2002, NEANSCDOC20026
[8]  
Krysl V., 2016, 26 S AER VVER REACTO
[9]   The Serpent Monte Carlo code: Status, development and applications in 2013 [J].
Leppanen, Jaakko ;
Pusa, Maria ;
Viitanen, Tuomas ;
Valtavirta, Ville ;
Kaltiaisenaho, Toni .
ANNALS OF NUCLEAR ENERGY, 2015, 82 :142-150
[10]   Fuel assembly burnup calculations for VVER fuel assemblies with the MONTE CARLO code SERPENT [J].
Loetsch, T. .
KERNTECHNIK, 2014, 79 (04) :295-302