Research and analysis of an energy harvester of piezoelectric cantilever beam based on nonlinear magnetic action

被引:3
作者
Gu, Xiangfeng [1 ]
He, Lipeng [1 ]
Yu, Gang [1 ]
Liu, Lei [1 ]
Zhou, Jianwen [1 ]
Cheng, Guangming [2 ]
机构
[1] Changchun Univ Technol, Sch Mechatron Engn, Changchun 130012, Peoples R China
[2] Zhejiang Normal Univ, Inst Precis Machinery, Jinhua 321004, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
TRIBOELECTRIC NANOGENERATOR; FREQUENCY; BANDWIDTH; DESIGN; SYSTEM; MASS;
D O I
10.1063/5.0064659
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
In this paper, a nonlinear piezoelectric energy harvester is developed based on rotational motion applications. It consists of the pedestal, the piezoelectric beam, the connection mass, the tip magnetic mass, the revolving host, the support frame, and the bolts. This device drives the intermittent magnetic vibration between the magnet and the tip magnetic mass to generate electric energy, avoids mechanical collision and wear, and extends the service life of the device. The working principle and vibration model of the proposed energy harvester are studied theoretically. The displacement state of the piezoelectric beam under a magnetic force is simulated and analyzed. In addition, a series of experiments verify the simulation results. With two driving magnets, 5 g tip magnetic mass, and 10 mm radial excitation distances, a piezoelectric energy harvester can capture energy efficiently. The results demonstrate that the piezoelectric energy harvester produces four resonance frequencies of 4, 11, 15, and 19 Hz. When the rotation frequency is 4 Hz, the maximum open-circuit voltage of the piezoelectric energy harvester is 96.87 V. The piezoelectric energy harvester gets the maximum average power of 8.97 mW when the external resistance is 300 k omega. At this time, the voltage across the resistance is 51.87 V.
引用
收藏
页数:9
相关论文
共 35 条
[11]   Complementary multi-mode low-frequency vibration energy harvesting with chiral piezoelectric structure [J].
He, Qingbo ;
Jiang, Tianxi .
APPLIED PHYSICS LETTERS, 2017, 110 (21)
[12]   A Piezoelectric Energy Harvester for Rotary Motion Applications: Design and Experiments [J].
Khameneifar, Farbod ;
Arzanpour, Siamak ;
Moallem, Mehrdad .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2013, 18 (05) :1527-1534
[13]   Optimization of cantilevered piezoelectric energy harvester with a fixed resonance frequency [J].
Liang Zhu ;
Xu ChunDong ;
Ren Bo ;
Di WenNing ;
Li Long ;
Luo HaoSu ;
Chen Zhen ;
Su Jun .
SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2014, 57 (06) :1093-1100
[14]   Low frequency wide bandwidth MEMS energy harvester based on spiral-shaped PVDF cantilever [J].
Liu Wen ;
Han MengDi ;
Meng Bo ;
Sun XuMing ;
Huang XianLiang ;
Zhang HaiXia .
SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2014, 57 (06) :1068-1072
[15]   Rotational double-beam piezoelectric energy harvester impacting against a stop [J].
Machado, S. P. ;
Febbo, M. ;
Ramirez, J. M. ;
Gatti, C. D. .
JOURNAL OF SOUND AND VIBRATION, 2020, 469
[16]   A piezoelectric frequency up-converting energy harvester with rotating proof mass for human body applications [J].
Pillatsch, Pit ;
Yeatman, Eric M. ;
Holmes, Andrew S. .
SENSORS AND ACTUATORS A-PHYSICAL, 2014, 206 :178-185
[17]   The pizzicato knee-joint energy harvester: characterization with biomechanical data and the effect of backpack load [J].
Pozzi, Michele ;
Aung, Min S. H. ;
Zhu, Meiling ;
Jones, Richard K. ;
Goulermas, John Y. .
SMART MATERIALS AND STRUCTURES, 2012, 21 (07)
[18]   A piezoelectric energy harvester for rotating environment using a linked E-shape multi-beam [J].
Ramirez, J. M. ;
Gatti, D. ;
Machado, S. P. ;
Febbo, M. .
EXTREME MECHANICS LETTERS, 2019, 27 :8-19
[19]   Self-powered triboelectric nanogenerator buoy ball for applications ranging from environment monitoring to water wave energy farm [J].
Shi, Qiongfeng ;
Wang, Hao ;
Wu, Han ;
Lee, Chengkuo .
NANO ENERGY, 2017, 40 :203-213
[20]   Large Power Amplification in Magneto-Mechano-Electric Harvesters through Distributed Forcing [J].
Sriramdas, Rammohan ;
Kang, Min-Gyu ;
Meng, Miao ;
Kiani, Mehdi ;
Ryu, Jungho ;
Sanghadasa, Mohan ;
Priya, Shashank .
ADVANCED ENERGY MATERIALS, 2020, 10 (08)