CRISPR-Cas gene editing technology and its application prospect in medicinal plants

被引:17
|
作者
Guo, Miaoxian [1 ]
Chen, Hongyu [1 ]
Dong, Shuting [1 ]
Zhang, Zheng [1 ]
Luo, Hongmei [1 ]
机构
[1] Chinese Acad Med Sci & Peking Union Med Coll, Inst Med Plant Dev, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
CRISPR-Cas; Gene editing; Reverse genetics; Synthetic biology; Genetic improvement; Medicinal plants; DENDROBIUM-OFFICINALE; TARGETED MUTAGENESIS; SALVIA-MILTIORRHIZA; CRYSTAL-STRUCTURE; DNA CLEAVAGE; GENOMIC DNA; GUIDE-RNA; EVOLUTION; DIVERSITY; SYSTEMS;
D O I
10.1186/s13020-022-00584-w
中图分类号
R [医药、卫生];
学科分类号
10 ;
摘要
The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas gene editing technology has opened a new era of genome interrogation and genome engineering because of its ease operation and high efficiency. An increasing number of plant species have been subjected to site-directed gene editing through this technology. However, the application of CRISPR-Cas technology to medicinal plants is still in the early stages. Here, we review the research history, structural characteristics, working mechanism and the latest derivatives of CRISPR-Cas technology, and discussed their application in medicinal plants for the first time. Furthermore, we creatively put forward the development direction of CRISPR technology applied to medicinal plant gene editing. The aim is to provide a reference for the application of this technology to genome functional studies, synthetic biology, genetic improvement, and germplasm innovation of medicinal plants. CRISPR-Cas is expected to revolutionize medicinal plant biotechnology in the near future.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] CRISPR-Cas Systems and Genome Editing: Beginning the Era of CRISPR/Cas Therapies for Humans
    Karpov, Dmitry S.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (10)
  • [42] Prospect of CRISPR/Cas9 technology in sustainable landscape plants
    Zhang, Xiaohui
    Qiu, Jiang
    2020 2ND INTERNATIONAL CONFERENCE ON GEOSCIENCE AND ENVIRONMENTAL CHEMISTRY (ICGEC 2020), 2020, 206
  • [43] CRISPR-Cas systems for genome editing of mammalian cells
    Mani, Indra
    Arazoe, Takayuki
    Singh, Vijai
    REPROGRAMMING THE GENOME: CRISPR-CAS-BASED HUMAN DISEASE THERAPY, 2021, 181 : 15 - 30
  • [44] Improvements in the genetic editing technologies: CRISPR-Cas and beyond
    Mingarro, Gerard
    li del Olmo, Marcel
    GENE, 2023, 852
  • [45] Simplified CRISPR-Cas genome editing for Saccharomyces cerevisiae
    Generoso, Wesley Cardoso
    Gottardi, Manuela
    Oreb, Mislay
    Boles, Eckhard
    JOURNAL OF MICROBIOLOGICAL METHODS, 2016, 127 : 203 - 205
  • [46] Harnessing CRISPR-Cas systems for bacterial genome editing
    Selle, Kurt
    Barrangou, Rodolphe
    TRENDS IN MICROBIOLOGY, 2015, 23 (04) : 225 - 232
  • [47] CRISPR-Cas systems for editing, regulating and targeting genomes
    Sander, Jeffry D.
    Joung, J. Keith
    NATURE BIOTECHNOLOGY, 2014, 32 (04) : 347 - 355
  • [48] CRISPR-Cas systems for editing, regulating and targeting genomes
    Jeffry D Sander
    J Keith Joung
    Nature Biotechnology, 2014, 32 : 347 - 355
  • [49] Development of CRISPR-Cas systems for genome editing and beyond
    Zhang, F.
    QUARTERLY REVIEWS OF BIOPHYSICS, 2019, 52
  • [50] Multiplex genome editing of microorganisms using CRISPR-Cas
    Adiego-Perez, Belen
    Randazzo, Paola
    Daran, Jean Marc
    Verwaal, Rene
    Roubos, Johannes. A.
    Daran-Lapujade, Pascale
    van der Oost, John
    FEMS MICROBIOLOGY LETTERS, 2019, 366 (08)