Denoising Autoencoder Genetic Programming for Real-World Symbolic Regression

被引:5
作者
Wittenberg, David [1 ]
Rothlauf, Franz [1 ]
机构
[1] Johannes Gutenberg Univ Mainz, Mainz, Germany
来源
PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022 | 2022年
关键词
Genetic Programming; Estimation of Distribution Algorithms; Denoising Autoencoders; Symbolic Regression;
D O I
10.1145/3520304.3528921
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Denoising Autoencoder Genetic Programming (DAE-GP) is a novel neural-network based estimation of distribution genetic programming algorithm that uses denoising autoencoder long short-term memory networks as probabilistic model to replace the standard recombination and mutation operators of genetic programming (GP). Recent work demonstrated that the DAE-GP outperforms standard GP. However, results are limited to the generalization of the royal tree problem. In this work, we apply the DAE-GP to real-world symbolic regression. On the Airfoil dataset and given a fixed number of fitness evaluations, we find that the DAE-GP generates significantly better and smaller (number of nodes) best candidate solutions than standard GP. The results highlight that the DAE-GP may be a good alternative for generating good and interpretable solutions for real-world symbolic regression.
引用
收藏
页码:612 / 614
页数:3
相关论文
共 12 条
[1]  
[Anonymous], 2017, Keras
[2]   MAIN ROTOR BROAD-BAND NOISE STUDY IN THE DNW [J].
BROOKS, TF ;
MARCOLINI, MA ;
POPE, DS .
JOURNAL OF THE AMERICAN HELICOPTER SOCIETY, 1989, 34 (02) :3-12
[3]   Batch Tournament Selection for Genetic Programming The quality of lexicase, the speed of Tournament [J].
de Melo, Vinicius V. ;
Vargas, Danilo Vasconcellos ;
Banzhaf, Wolfgang .
PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'19), 2019, :994-1002
[4]  
Dua D, 2017, UCI machine learning repository
[5]  
Fortin FA, 2012, J MACH LEARN RES, V13, P2171
[6]   Probabilistic model building in genetic programming: a critical review [J].
Kim, Kangil ;
Shan, Yin ;
Xuan Hoai Nguyen ;
McKay, R. I. .
GENETIC PROGRAMMING AND EVOLVABLE MACHINES, 2014, 15 (02) :115-167
[7]  
King DB, 2015, ACS SYM SER, V1214, P1, DOI 10.1021/bk-2015-1214.ch001
[8]   Solving the Exponential Growth of Symbolic Regression Trees in Geometric Semantic Genetic Programming [J].
Martins, Joao Francisco B. S. ;
Oliveira, Luiz Otavio V. B. ;
Miranda, Luis F. ;
Casadei, Felipe ;
Pappa, Gisele L. .
GECCO'18: PROCEEDINGS OF THE 2018 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2018, :1151-1158
[9]   The Use of an Analytic Quotient Operator in Genetic Programming [J].
Ni, Ji ;
Drieberg, Russ H. ;
Rockett, Peter I. .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2013, 17 (01) :146-152
[10]   Improving Model-Based Genetic Programming for Symbolic Regression of Small Expressions [J].
Virgolin, M. ;
Alderliesten, T. ;
Witteveen, C. ;
Bosman, P. A. N. .
EVOLUTIONARY COMPUTATION, 2021, 29 (02) :211-237