Denoising Autoencoder Genetic Programming for Real-World Symbolic Regression

被引:4
|
作者
Wittenberg, David [1 ]
Rothlauf, Franz [1 ]
机构
[1] Johannes Gutenberg Univ Mainz, Mainz, Germany
来源
PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022 | 2022年
关键词
Genetic Programming; Estimation of Distribution Algorithms; Denoising Autoencoders; Symbolic Regression;
D O I
10.1145/3520304.3528921
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Denoising Autoencoder Genetic Programming (DAE-GP) is a novel neural-network based estimation of distribution genetic programming algorithm that uses denoising autoencoder long short-term memory networks as probabilistic model to replace the standard recombination and mutation operators of genetic programming (GP). Recent work demonstrated that the DAE-GP outperforms standard GP. However, results are limited to the generalization of the royal tree problem. In this work, we apply the DAE-GP to real-world symbolic regression. On the Airfoil dataset and given a fixed number of fitness evaluations, we find that the DAE-GP generates significantly better and smaller (number of nodes) best candidate solutions than standard GP. The results highlight that the DAE-GP may be a good alternative for generating good and interpretable solutions for real-world symbolic regression.
引用
收藏
页码:612 / 614
页数:3
相关论文
共 50 条
  • [1] Small Solutions for Real-World Symbolic Regression Using Denoising Autoencoder Genetic Programming
    Wittenberg, David
    Rothlauf, Franz
    GENETIC PROGRAMMING, EUROGP 2023, 2023, 13986 : 101 - 116
  • [2] Analyzing Optimized Constants in Genetic Programming on a Real-World Regression Problem
    Sobania, Dominik
    Briesch, Martin
    Wittenberg, David
    Rothlauf, Franz
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022, 2022, : 606 - 607
  • [3] Autoencoder-based patch learning for real-world image denoising
    Chen, Fei
    Chen, Haiqing
    Zeng, Xunxun
    Wang, Meiqing
    JOURNAL OF ALGORITHMS & COMPUTATIONAL TECHNOLOGY, 2019, 13
  • [4] Towards Automatic Grammatical Evolution for Real-world Symbolic Regression
    Ali, Muhammad
    Kshirsagar, Meghana
    Naredo, Enrique
    Ryan, Conor
    PROCEEDINGS OF THE 13TH INTERNATIONAL JOINT CONFERENCE ON COMPUTATIONAL INTELLIGENCE (IJCCI), 2021, : 68 - 78
  • [5] Sequential Symbolic Regression with Genetic Programming
    Oliveira, Luiz Otavio V. B.
    Otero, Fernando E. B.
    Pappa, Gisele L.
    Albinati, Julio
    GENETIC PROGRAMMING THEORY AND PRACTICE XII, 2015, : 73 - 90
  • [6] Compositional Genetic Programming for Symbolic Regression
    Krawiec, Krzysztof
    Kossinski, Dominik
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022, 2022, : 570 - 573
  • [7] Symbolic regression via genetic programming
    Augusto, DA
    Barbosa, HJC
    SIXTH BRAZILIAN SYMPOSIUM ON NEURAL NETWORKS, VOL 1, PROCEEDINGS, 2000, : 173 - 178
  • [8] Statistical genetic programming for symbolic regression
    Haeri, Maryam Amir
    Ebadzadeh, Mohammad Mehdi
    Folino, Gianluigi
    APPLIED SOFT COMPUTING, 2017, 60 : 447 - 469
  • [9] The Inefficiency of Genetic Programming for Symbolic Regression
    Kronberger, Gabriel
    de Franca, Fabricio Olivetti
    Desmond, Harry
    Bartlett, Deaglan J.
    Kammerer, Lukas
    PARALLEL PROBLEM SOLVING FROM NATURE-PPSN XVIII, PPSN 2024, PT I, 2024, 15148 : 273 - 289
  • [10] On improving genetic programming for symbolic regression
    Gustafson, S
    Burke, EK
    Krasnogor, N
    2005 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-3, PROCEEDINGS, 2005, : 912 - 919