NAVIER-STOKES EQUATIONS ON THE β-PLANE

被引:10
作者
Al-Jaboori, Mustafa A. H. [1 ]
Wirosoetisno, Djoko [1 ]
机构
[1] Univ Durham, Dept Math Sci, Durham DH1 3LE, England
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2011年 / 16卷 / 03期
关键词
Navier-Stokes equations; beta plane; global attractor;
D O I
10.3934/dcdsb.2011.16.687
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that, given a sufficiently regular forcing, the solution of the two-dimensional Navier-Stokes equations on the periodic beta-plane (i.e. with the Coriolis force varying as f(0) + beta(y)) will become nearly zonal: with the vorticity omega(x, y, t) = (omega) over bar (y, t) + (omega) over tilde (x, y, t), one has vertical bar(omega) over tilde vertical bar(2)(Hs) <= beta(-1) M-s(...) as t -> infinity. We use this show that, for sufficiently large beta, the global attractor of this system reduces to a point.
引用
收藏
页码:687 / 701
页数:15
相关论文
共 16 条
[1]  
ALJABOORI MAH, THESIS DURHAM U
[2]  
[Anonymous], 2001, CAM T APP M
[3]  
Babin A, 1997, ASYMPTOTIC ANAL, V15, P103
[4]  
Chepyzhov VV., 2002, Attractors for Equations of Mathematical Physics
[5]   ON THE DIMENSION OF THE ATTRACTORS IN TWO-DIMENSIONAL TURBULENCE [J].
CONSTANTIN, P ;
FOIAS, C ;
TEMAM, R .
PHYSICA D, 1988, 30 (03) :284-296
[6]  
Doering C.R., 1995, Applied analysis of the Navier-Stokes equations
[7]   ASYMPTOTIC ANALYSIS OF THE NAVIER-STOKES EQUATIONS [J].
FOIAS, C ;
MANLEY, OP ;
TEMAM, R ;
TREVE, YM .
PHYSICA D, 1983, 9 (1-2) :157-188
[8]  
GALLAGHER I, 2006, MEM SOC MATH FRANCE, V107
[9]   ENERGY-SPECTRA AND COHERENT STRUCTURES IN FORCED 2-DIMENSIONAL AND BETA-PLANE TURBULENCE [J].
MALTRUD, ME ;
VALLIS, GK .
JOURNAL OF FLUID MECHANICS, 1991, 228 :321-&
[10]   WAVES AND TURBULENCE ON A BETA-PLANE [J].
RHINES, PB .
JOURNAL OF FLUID MECHANICS, 1975, 69 (JUN10) :417-443