THE RASMUSSEN INVARIANT OF A HOMOGENEOUS KNOT

被引:12
作者
Abe, Tetsuya [1 ]
机构
[1] Osaka City Univ, Adv Math Inst, Sumiyoshi Ku, Osaka 5588585, Japan
关键词
SLICE-BENNEQUIN INEQUALITY; OZSVATH-SZABO; LINKS; QUASIPOSITIVITY; HOMOLOGY;
D O I
10.1090/S0002-9939-2010-10687-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A homogeneous knot is a generalization of alternating knots and positive knots. We determine the Rasmussen invariant of a homogeneous knot. This is a new class of knots such that the Rasmussen invariant is explicitly described in terms of its diagrams. As a corollary, we obtain some characterizations of a positive knot. In particular, we recover Baader's theorem which states that a knot is positive if and only if it is homogeneous and strongly quasi positive
引用
收藏
页码:2647 / 2656
页数:10
相关论文
共 31 条
[2]  
Cromwell P.R., 2004, Knots and links
[3]   HOMOGENEOUS LINKS [J].
CROMWELL, PR .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1989, 39 :535-552
[4]   Man and machine thinking about the smooth 4-dimensional Poincare conjecture [J].
Freedman, Michael ;
Gompf, Robert ;
Morrison, Scott ;
Walker, Kevin .
QUANTUM TOPOLOGY, 2010, 1 (02) :171-208
[5]   GENERA OF THE ALTERNATING LINKS [J].
GABAI, D .
DUKE MATHEMATICAL JOURNAL, 1986, 53 (03) :677-681
[6]  
Gabai D., 1983, Low-Dimensional Topology, V20, P131
[8]   THE OZSVATH-SZABO AND RASMUSSEN CONCORDANCE INVARIANTS ARE NOT EQUAL [J].
Hedden, Matthew ;
Ording, Philip .
AMERICAN JOURNAL OF MATHEMATICS, 2008, 130 (02) :441-453
[9]  
Kawamura T., 2009, ESTIMATE RASMUSSEN I
[10]   The Rasmussen invariants and the sharper slice-Bennequin inequality on knots [J].
Kawamura, Tomomi .
TOPOLOGY, 2007, 46 (01) :29-38