Lipschitz and commutator estimates in symmetric operator spaces

被引:0
作者
Potapov, Denis [1 ]
Sukochev, Fyodor [1 ]
机构
[1] Flinders Univ S Australia, Fac Sci & Engn, Sch Informat & Engn, Bedford Pk, SA 5042, Australia
关键词
non-commutative function spaces; commutators; perturbations;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper studies Lipschitz and commutator estimates in (non-commutative) symmetric operator spaces E associated with a general semi-finite von Neumann algebra M taken in its left regular representation. In particular, we show that if f' is of bounded variation and E is a reflexive (non commutative) L-p-space on M, then the Lipschitz estimate (*) parallel to f(a) - F(b)parallel to(E)<= c(f)parallel to a - b parallel to(E), holds for arbitrary self-adjoint operators a and b affiliated with M.
引用
收藏
页码:211 / 234
页数:24
相关论文
共 29 条
  • [1] [Anonymous], 1982, TRANSL MATH MONOGRAP
  • [2] [Anonymous], J OPERATOR THEORY
  • [3] [Anonymous], 1980, LOND MATH SOC MONOGR
  • [4] [Anonymous], J SOVIET MATH, DOI 10.1007/BF01099305
  • [5] ARAZY J, 1990, INTEGR EQUAT OPER TH, V13, P462
  • [6] Birman M.S., 1967, PROBLEMY MAT FIZ, V1, P33
  • [7] BIRMAN MS, 1967, PROBLEMY MAT FIZ, V2, P26
  • [8] BIRMAN MS, 1973, PROBLEMS MATH PHYSIC, V6, P27
  • [9] Bratteli O., 1979, Operator Algebras and Quantum Statistical Mechanics, V1
  • [10] On unbounded p-summable Fredholm modules
    Carey, AL
    Phillips, J
    Sukochev, FA
    [J]. ADVANCES IN MATHEMATICS, 2000, 151 (02) : 140 - 163