Numerical analysis on the heat and work transfer due to shear in a hot cascade Ranque-Hilsch vortex tube

被引:28
作者
Bej, Nilotpala [1 ]
Sinhamahapatra, K. P. [1 ]
机构
[1] Indian Inst Technol, Dept Aerosp Engn, Kharagpur 721302, W Bengal, India
来源
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID | 2016年 / 68卷
关键词
Cascade-type RHVT; Work and heat transfer; Thermal separation mechanism; Tangential shear work; Two-equation turbulence model; ENERGY SEPARATION; TURBULENCE MODEL; CFD ANALYSIS; FLOW; REFRIGERATOR; PERFORMANCE; OPTIMIZATION; PARAMETERS;
D O I
10.1016/j.ijrefrig.2016.04.021
中图分类号
O414.1 [热力学];
学科分类号
摘要
Cascading of vortex tubes is a possible implementation to extract significantly larger amount of useful work. A hot cascade-type RHVT makes use of the cold gas for cooling purposes while improving the heating capacity of the hot gas. In a vortex tube inflow pressure is the only source of energy which converts into thermal energy. The conversion of pressure energy into thermal energy is associated with the heat and work transfer due to shear along the radial, axial and tangential directions. In this paper, the physics of fluid flow and thermal separation are studied based on the heat and work transfer due to shear along all three directions. The work transfer due to the action of tangential shear is always from the cold to hot fluid layers and is the most dominant factor in the thermal separation process. The contribution increases considerably with hot cascading. However, the process of thermal separation degrades due to the effect of sensible heat transfer. (C) 2016 Elsevier Ltd and IIR. All rights reserved.
引用
收藏
页码:161 / 176
页数:16
相关论文
共 44 条
[31]  
Ranque GJ., 1933, J. Phys. Radium (Paris), V115, P112, DOI DOI 10.1016/J.IJREFRIG.2009.12.029
[32]  
REYNOLDS AJ, 1961, J APPL MATH PHYS, V12, P343
[33]   Introduction of Annular Vortex Tube and experimental comparison with Ranque-Hilsch Vortex Tube [J].
Sadi, Meisam ;
Farzaneh-Gord, Mahmood .
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2014, 46 :142-151
[34]   Experimental modeling of vortex tube refrigerator [J].
Saidi, MH ;
Valipour, MS .
APPLIED THERMAL ENGINEERING, 2003, 23 (15) :1971-1980
[35]   Numerical simulation of turbulent flow in a Ranque-Hilsch vortex tube [J].
Secchiaroli, A. ;
Ricci, R. ;
Montelpare, S. ;
D'Alessandro, V. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2009, 52 (23-24) :5496-5511
[36]   A new approach to study and optimize cooling performance of a Ranque-Hilsch vortex tube [J].
Shamsoddini, Rahim ;
Khorasani, Ahmadreza Faghih .
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2012, 35 (08) :2339-2348
[37]   Numerical analysis of the effects of nozzles number on the flow and power of cooling of a vortex tube [J].
Shamsoddini, Rahim ;
Nezhad, Alireza Hossein .
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2010, 33 (04) :774-782
[38]   Comparison of CFD analysis to empirical data in a commercial vortex tube [J].
Skye, HM ;
Nellis, GF ;
Klein, SA .
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2006, 29 (01) :71-80
[39]   CFD analysis of energy separation of vortex tube employing different gases, turbulence models and discretisation schemes [J].
Thakare, H. R. ;
Parekh, A. D. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2014, 78 :360-370
[40]   Experimental modeling of a curved Ranque-Hilsch vortex tube refrigerator [J].
Valipour, Mohammad Sadegh ;
Niazi, Nima .
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2011, 34 (04) :1109-1116