Ultrasensitive plano-concave optical microresonators for ultrasound sensing

被引:334
作者
Guggenheim, James A. [1 ]
Li, Jing [1 ]
Allen, Thomas J. [1 ]
Colchester, Richard J. [1 ]
Noimark, Sacha [1 ,2 ]
Ogunlade, Olumide [1 ]
Parkin, Ivan P. [2 ]
Papakonstantinou, Ioannis [3 ]
Desjardins, Adrien E. [1 ]
Zhang, Edward Z. [1 ]
Beard, Paul C. [1 ]
机构
[1] UCL, Dept Med Phys & Biomed Engn, Gower St, London WC1E 6BT, England
[2] UCL, Dept Chem, Gower St, London WC1E 6BT, England
[3] UCL, Dept Elect & Elect Engn, Gower St, London WC1E 6BT, England
基金
英国工程与自然科学研究理事会; 欧洲研究理事会; 英国医学研究理事会; 英国惠康基金;
关键词
PHOTOACOUSTIC MICROSCOPY; TOMOGRAPHY; SENSITIVITY; SENSOR;
D O I
10.1038/s41566-017-0027-x
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Highly sensitive broadband ultrasound detectors are needed to expand the capabilities of biomedical ultrasound, photoacoustic imaging and industrial ultrasonic non-destructive testing techniques. Here, a generic optical ultrasound sensing concept based on a novel plano-concave polymer microresonator is described. This achieves strong optical confinement (Q-factors >10(5)) resulting in very high sensitivity with excellent broadband acoustic frequency response and wide directivity. The concept is highly scalable in terms of bandwidth and sensitivity. To illustrate this, a family of microresonator sensors with broadband acoustic responses up to 40 MHz and noise-equivalent pressures as low as 1.6 mPa per root Hz have been fabricated and comprehensively characterized in terms of their acoustic performance. In addition, their practical application to high-resolution photoacoustic and ultrasound imaging is demonstrated. The favourable acoustic performance and design flexibility of the technology offers new opportunities to advance biomedical and industrial ultrasound-based techniques.
引用
收藏
页码:714 / +
页数:8
相关论文
共 36 条
[1]   Large-field-of-view laser-scanning OR-PAM using a fibre optic sensor [J].
Allen, T. J. ;
Zhang, E. ;
Beard, P. C. .
PHOTONS PLUS ULTRASOUND: IMAGING AND SENSING 2015, 2015, 9323
[2]   Optimising the detection parameters for deep tissue photoacoustic imaging [J].
Allen, T. J. ;
Beard, P. C. .
PHOTONS PLUS ULTRASOUND: IMAGING AND SENSING 2012, 2012, 8223
[3]   CHARACTERISTICS OF A PVDF MEMBRANE HYDROPHONE FOR USE IN THE RANGE 1-100 MHZ [J].
BACON, DR .
IEEE TRANSACTIONS ON SONICS AND ULTRASONICS, 1982, 29 (01) :18-25
[4]   Biomedical photoacoustic imaging [J].
Beard, Paul .
INTERFACE FOCUS, 2011, 1 (04) :602-631
[5]   Transduction mechanisms of the Fabry-Perot polymer film sensing concept for wideband ultrasound detection [J].
Beard, PC ;
Pérennès, F ;
Mills, TN .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 1999, 46 (06) :1575-1582
[6]   Broadband miniature optical ultrasound probe for high resolution vascular tissue imaging [J].
Colchester, Richard J. ;
Zhang, Edward Z. ;
Mosse, Charles A. ;
Beard, Paul C. ;
Papakonstantinou, Ioannis ;
Desjardins, Adrien E. .
BIOMEDICAL OPTICS EXPRESS, 2015, 6 (04) :1502-1511
[7]   Ultrasonic arrays for non-destructive evaluation: A review [J].
Drinkwater, Bruce W. ;
Wilcox, Paul D. .
NDT & E INTERNATIONAL, 2006, 39 (07) :525-541
[8]   Optical microphone hears ultrasound [J].
Fischer, Balthasar .
NATURE PHOTONICS, 2016, 10 (06) :356-358
[9]  
Grosse CU., 2008, ACOUSTIC EMISSION TE, DOI 10.1007/978-3-540-69972-9
[10]   Frequency response and directivity of highly sensitive optical microresonator detectors for photoacoustic imaging [J].
Guggenheim, James A. ;
Li, Jing ;
Zhang, Edward Z. ;
Beard, Paul C. .
PHOTONS PLUS ULTRASOUND: IMAGING AND SENSING 2015, 2015, 9323