Generalized function projective synchronization of two different hyperchaotic systems with unknown parameters

被引:32
作者
Li, Zhenbo [1 ]
Zhao, Xiaoshan [1 ]
机构
[1] Tianjin Univ Technol & Educ, Dept Math & Phys, Tianjin 300222, Peoples R China
基金
中国国家自然科学基金;
关键词
Generalized function projective synchronization; Antisymmetric structure; Adaptive control; Hyperchaotic system;
D O I
10.1016/j.nonrwa.2011.03.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Combining adaptive control theory with an antisymmetric structure, an extended adaptive controller which is more generalized and simpler than some existing controllers is designed. Under the controller, generalized function projective synchronization of two different uncertain hyperchaotic systems is achieved, and the unknown parameters are also estimated. In numerical simulations, the scaling function factors discussed in this paper are more complicated, and they have not been discussed in other papers. Corresponding simulation results are presented to show that the controller works well. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2607 / 2615
页数:9
相关论文
共 19 条
[1]   Chaos synchronization of Lu dynamical system [J].
Agiza, HN .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 58 (1-2) :11-20
[2]   Generalized projective synchronization of different chaotic systems based on antisymmetric structure [J].
Cai, Na ;
Jing, Yuanwei ;
Zhang, Siying .
CHAOS SOLITONS & FRACTALS, 2009, 42 (02) :1190-1196
[3]   Impulsive control and synchronization of general chaotic system [J].
Chen, DL ;
Sun, JT ;
Huang, CS .
CHAOS SOLITONS & FRACTALS, 2006, 28 (01) :213-218
[4]   The function cascade synchronization approach with uncertain parameters or not for hyperchaotic systems [J].
Chen, Yong ;
An, Hongli ;
Li, Zhibin .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 197 (01) :96-110
[5]   Function projective synchronization between two identical chaotic systems [J].
Chen, Yong ;
Li, Xin .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2007, 18 (05) :883-888
[6]   Lag synchronization of structurally nonequivalent chaotic systems with time delays [J].
Chen, Yun ;
Chen, Xiaoxiang ;
Gu, Shengshi .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (09) :1929-1937
[7]   Modified function projective synchronization of chaotic system [J].
Du, Hongyue ;
Zeng, Qingshuang ;
Wang, Changhong .
CHAOS SOLITONS & FRACTALS, 2009, 42 (04) :2399-2404
[8]   Anti-synchronization of four scroll attractor with fully unknown parameters [J].
El-Dessoky, M. M. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (02) :778-783
[9]   Adaptive feedback controller for projective synchronization [J].
Hu, Manfeng ;
Xu, Zhenyuan .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2008, 9 (03) :1253-1260
[10]   Projective synchronization of a new hyperchaotic Lorenz system [J].
Jia, Qiang .
PHYSICS LETTERS A, 2007, 370 (01) :40-45