Transparent Triboelectric Nanogenerators and Self-Powered Pressure Sensors Based on Micropatterned Plastic Films

被引:1717
|
作者
Fan, Feng-Ru [1 ,2 ]
Lin, Long [1 ]
Zhu, Guang [1 ]
Wu, Wenzhuo [1 ]
Zhang, Rui [1 ]
Wang, Zhong Lin [1 ,3 ]
机构
[1] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[2] Xiamen Univ, Coll Chem & Chem Engn, Dept Chem, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Peoples R China
[3] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, Beijing, Peoples R China
关键词
Nanogenerator; transparent; polymer; pressure sensor; ELECTRODES; MATRIX; ENERGY;
D O I
10.1021/nl300988z
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Transparent, flexible and high efficient power sources are important components of organic electronic and optoelectronic devices. In this work, based on the principle of the previously demonstrated triboelectric generator, we demonstrate a new high-output, flexible and transparent nanogenerator by using transparent polymer materials. We have fabricated three types of regular and uniform polymer patterned arrays (line, cube, and pyramid) to improve the efficiency of the nanogenerator. The power generation of the pyramid-featured device far surpassed that exhibited by the unstructured films and gave an output voltage of up to 18 Vat a current density of similar to 0.13 mu A/cm(2). Furthermore, the as-prepared nanogenerator can be applied as a self-powered pressure sensor for sensing a water droplet (8 mg, similar to 3.6 Pa in contact pressure) and a falling feather (20 mg, Pa in contact pressure) with a low-end detection limit of similar to 13 mPa.
引用
收藏
页码:3109 / 3114
页数:6
相关论文
共 50 条
  • [1] Paper-Based Origami Triboelectric Nanogenerators and Self-Powered Pressure Sensors
    Yang, Po-Kang
    Lin, Zong-Hong
    Pradel, Ken C.
    Lin, Long
    Li, Xiuhan
    Wen, Xiaonan
    He, Jr-Hau
    Wang, Zhong Lin
    ACS NANO, 2015, 9 (01) : 901 - 907
  • [2] Triboelectric nanogenerators as self-powered active sensors
    Wang, Sihong
    Lin, Long
    Wang, Zhong Lin
    NANO ENERGY, 2015, 11 : 436 - 462
  • [3] Recent Progress in Self-Powered Sensors Based on Triboelectric Nanogenerators
    Wu, Junpeng
    Zheng, Yang
    Li, Xiaoyi
    SENSORS, 2021, 21 (21)
  • [4] Self-Powered Hall Vehicle Sensors Based on Triboelectric Nanogenerators
    Guo, Tong
    Zhao, Junqing
    Liu, Wenbo
    Liu, Guoxu
    Pang, Yaokun
    Bu, Tianzhao
    Xi, Fengben
    Zhang, Chi
    Li, Xinjian
    ADVANCED MATERIALS TECHNOLOGIES, 2018, 3 (08):
  • [5] Progress in triboelectric nanogenerators as self-powered smart sensors
    Zhang, Nannan
    Tao, Changyuan
    Fan, Xing
    Chen, Jun
    JOURNAL OF MATERIALS RESEARCH, 2017, 32 (09) : 1628 - 1646
  • [6] Innovative Technology for Self-Powered Sensors: Triboelectric Nanogenerators
    Wang, Nannan
    Liu, Yupeng
    Ye, Enyi
    Li, Zibiao
    Wang, Daoai
    ADVANCED SENSOR RESEARCH, 2023, 2 (05):
  • [7] Triboelectric nanogenerators for self-powered sensors and other applications
    Lee, Chengkuo
    Qin, Yong
    Wang, Yi-Cheng
    MRS BULLETIN, 2025,
  • [8] Progress in triboelectric nanogenerators as self-powered smart sensors
    Nannan Zhang
    Changyuan Tao
    Xing Fan
    Jun Chen
    Journal of Materials Research, 2017, 32 : 1628 - 1646
  • [9] Triboelectric nanogenerators as self-powered sensors for biometric authentication
    Shi, Xue
    Han, Kai
    Pang, Yaokun
    Mai, Wenjie
    Luo, Jianjun
    NANOSCALE, 2023, 15 (22) : 9635 - 9651
  • [10] Advances in self-powered sports monitoring sensors based on triboelectric nanogenerators
    Fengxin Sun
    Yongsheng Zhu
    Changjun Jia
    Tianming Zhao
    Liang Chu
    Yupeng Mao
    Journal of Energy Chemistry, 2023, 79 (04) : 477 - 488