Compressive auto-indexing in femtosecond nanocrystallography

被引:6
作者
Maia, Filipe R. N. C. [1 ]
Yang, Chao [1 ]
Marchesini, Stefano [1 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA
关键词
Crystallography; Indexing; Compressive sensing; PROJECTED GRADIENT METHODS; FREE-ELECTRON LASER; SIGNAL RECOVERY; EXTREME-ULTRAVIOLET; FOURIER-TRANSFORM; RADIATION; OPERATION; ALGORITHM;
D O I
10.1016/j.ultramic.2010.10.016
中图分类号
TH742 [显微镜];
学科分类号
摘要
Ultrafast nanocrystallography has the potential to revolutionize biology by enabling structural elucidation of proteins for which it is possible to grow crystals with 10 or fewer unit cells on the side. The success of nanocrystallography depends on robust orientation-determination procedures that allow us to average diffraction data from multiple nanocrystals to produce a three-dimensional (3D) diffraction data volume with a high signal-to-noise ratio. Such a 3D diffraction volume can then be phased using standard crystallographic techniques. "Indexing" algorithms used in crystallography enable orientation determination of diffraction data from a single crystal when a relatively large number of reflections are recorded. Here we show that it is possible to obtain the exact lattice geometry from a smaller number of measurements than standard approaches using a basis pursuit solver. Published by Elsevier B.V.
引用
收藏
页码:807 / 811
页数:5
相关论文
共 35 条
[1]   Operation of a free-electron laser from the extreme ultraviolet to the water window [J].
Ackermann, W. ;
Asova, G. ;
Ayvazyan, V. ;
Azima, A. ;
Baboi, N. ;
Baehr, J. ;
Balandin, V. ;
Beutner, B. ;
Brandt, A. ;
Bolzmann, A. ;
Brinkmann, R. ;
Brovko, O. I. ;
Castellano, M. ;
Castro, P. ;
Catani, L. ;
Chiadroni, E. ;
Choroba, S. ;
Cianchi, A. ;
Costello, J. T. ;
Cubaynes, D. ;
Dardis, J. ;
Decking, W. ;
Delsim-Hashemi, H. ;
Delserieys, A. ;
Di Pirro, G. ;
Dohlus, M. ;
Duesterer, S. ;
Eckhardt, A. ;
Edwards, H. T. ;
Faatz, B. ;
Feldhaus, J. ;
Floettmann, K. ;
Frisch, J. ;
Froehlich, L. ;
Garvey, T. ;
Gensch, U. ;
Gerth, Ch. ;
Goerler, M. ;
Golubeva, N. ;
Grabosch, H.-J. ;
Grecki, M. ;
Grimm, O. ;
Hacker, K. ;
Hahn, U. ;
Han, J. H. ;
Honkavaara, K. ;
Hott, T. ;
Huening, M. ;
Ivanisenko, Y. ;
Jaeschke, E. .
NATURE PHOTONICS, 2007, 1 (06) :336-342
[2]  
Altarelli M., 2006, Technical design report
[3]  
[Anonymous], 2001, Mathematical methods in image reconstruction
[4]  
Becker S., 2009, NESTA FAST ACCURATE
[5]   Nonmonotone spectral projected gradient methods on convex sets [J].
Birgin, EG ;
Martínez, JM ;
Raydan, M .
SIAM JOURNAL ON OPTIMIZATION, 2000, 10 (04) :1196-1211
[6]   Inexact spectral projected gradient methods on convex sets [J].
Birgin, EG ;
Martínez, JM ;
Raydan, M .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2003, 23 (04) :539-559
[7]  
Bricogne G., P EEC COOP WORKSH PO
[8]   The practicality of using a three-dimensional fast Fourier transform in auto-indexing protein single-crystal oscillation images [J].
Campbell, JW .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 1998, 31 :407-413
[9]   Robust uncertainty principles:: Exact signal reconstruction from highly incomplete frequency information [J].
Candès, EJ ;
Romberg, J ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (02) :489-509
[10]   Stable signal recovery from incomplete and inaccurate measurements [J].
Candes, Emmanuel J. ;
Romberg, Justin K. ;
Tao, Terence .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (08) :1207-1223