Cu2ZnSnS4 thin-film solar cell absorbers illuminated by soft x-rays

被引:8
作者
Baer, M. [1 ,2 ,3 ]
Schubert, B. -A. [1 ]
Marsen, B. [1 ]
Wilks, R. G. [1 ]
Blum, M. [3 ,4 ]
Krause, S. [3 ]
Pookpanratana, S. [3 ]
Zhang, Y. [3 ,5 ]
Unold, T. [1 ]
Yang, W. [4 ]
Weinhardt, L.
Heske, C. [3 ]
Schock, H. -W. [1 ]
机构
[1] Helmholtz Zentrum Berlin Mat & Energie GmbH HZB, Solar Energy Res, D-14109 Berlin, Germany
[2] Brandenburg Tech Univ Cottbus, Inst Phys & Chem, D-03046 Cottbus, Germany
[3] Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA
[4] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
[5] Xiamen Univ, Dept Phys, Xiamen 361005, Peoples R China
关键词
PERFORMANCE;
D O I
10.1557/jmr.2012.59
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In view of the complexity of thin-film solar cells, which are comprised of a multitude of layers, interfaces, surfaces, elements, impurities, etc., it is crucial to characterize and understand the chemical and electronic structure of these components. Because of the high complexity of the Cu2ZnSn(S,Se)(4) compound semiconductor absorber material alone, this is particularly true for kesterite-based devices. Hence, this paper reviews our recent progress in the characterization of Cu2ZnSnS4 (CZTS) thin films. It is demonstrated that a combination of different soft x-ray spectroscopies is an extraordinarily powerful method for illuminating the chemical and electronic material characteristics from many different perspectives, ultimately resulting in a comprehensive picture of these properties. The focus of the article will be on secondary impurity phases, electronic structure, native oxidation, and the CZTS surface composition.
引用
收藏
页码:1097 / 1104
页数:8
相关论文
共 50 条
[31]   Electronic and optical properties of Cu2ZnSnS4 and Cu2ZnSnSe4 [J].
Persson, Clas .
JOURNAL OF APPLIED PHYSICS, 2010, 107 (05)
[32]   19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor [J].
Repins, Ingrid ;
Contreras, Miguel A. ;
Egaas, Brian ;
DeHart, Clay ;
Scharf, John ;
Perkins, Craig L. ;
To, Bobby ;
Noufi, Rommel .
PROGRESS IN PHOTOVOLTAICS, 2008, 16 (03) :235-239
[33]   CHALCOPYRITE DEFECT CHALCOPYRITE HETEROJUNCTIONS ON THE BASIS OF CUINSE2 [J].
SCHMID, D ;
RUCKH, M ;
GRUNWALD, F ;
SCHOCK, HW .
JOURNAL OF APPLIED PHYSICS, 1993, 73 (06) :2902-2909
[34]   The role of structural properties and defects for the performance of Cu-chalcopyrite-based thin-film solar cells [J].
Schock, HW ;
Rau, U .
PHYSICA B-CONDENSED MATTER, 2001, 308 :1081-1085
[35]   The crystal structure of kesterite type compounds: A neutron and X-ray diffraction study [J].
Schorr, Susan .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2011, 95 (06) :1482-1488
[36]   In-situ investigation of the kesterite formation from binary and ternary sulphides [J].
Schorr, Susan ;
Weber, Alfons ;
Honkimaeki, Veijo ;
Schock, Hans-Werner .
THIN SOLID FILMS, 2009, 517 (07) :2461-2464
[37]   Cu2ZnSnS4 thin film solar cells by fast coevaporation [J].
Schubert, Bjoern-Arvid ;
Marsen, Bjoern ;
Cinque, Sonja ;
Unold, Thomas ;
Klenk, Reiner ;
Schorr, Susan ;
Schock, Hans-Werner .
PROGRESS IN PHOTOVOLTAICS, 2011, 19 (01) :93-96
[38]   A 3.2% efficient Kesterite device from electrodeposited stacked elemental layers [J].
Scragg, Jonathan J. ;
Berg, Dominik M. ;
Dale, Phillip J. .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2010, 646 (1-2) :52-59
[39]   Self-consistent GW calculations for semiconductors and insulators [J].
Shishkin, M. ;
Kresse, G. .
PHYSICAL REVIEW B, 2007, 75 (23)
[40]   Implementation and performance of the frequency-dependent GW method within the PAW framework [J].
Shishkin, M. ;
Kresse, G. .
PHYSICAL REVIEW B, 2006, 74 (03)