Instanton liquid properties from lattice QCD

被引:15
作者
Athenodorou, A. [1 ]
Boucaud, Ph. [2 ]
De Soto, F. [3 ,8 ]
Rodriguez-Quintero, J. [4 ]
Zafeiropoulos, S. [5 ,6 ,7 ]
机构
[1] Cyprus Inst, Computat Based Sci & Technol Res Ctr, 20 Kavafi Str, CY-2121 Nicosia, Cyprus
[2] Univ Paris Saclay, Univ Paris Sud, CNRS, Lab Phys Theor,UMR8627, F-91405 Orsay, France
[3] Univ Pablo Olavide, Dept Sistemas Fis Quim & Nat, Seville 41013, Spain
[4] Univ Huelva, Fac Ciencias Expt, Dept Ciencias Integradas, Huelva 21071, Spain
[5] Heidelberg Univ, Inst Theoret Phys, Philosophenweg 12, D-69120 Heidelberg, Germany
[6] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA
[7] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA
[8] Univ Granada, CAFPE, E-18071 Granada, Spain
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2018年 / 02期
基金
美国国家科学基金会;
关键词
Lattice QCD; Solitons Monopoles and Instantons; Confinement; GREEN-FUNCTIONS; VACUUM; TOPOLOGY; GLUON;
D O I
10.1007/JHEP02(2018)140
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We examined the instanton contribution to the QCD configurations generated from lattice QCD for N-F = 0, N-F = 2 + 1 and NF = 2 + 1 + 1 dynamical quark flavors from two different and complementary approaches. First via the use of Gradient flow, we computed instanton liquid properties using an algorithm to localize instantons in the gauge field con figurations and studied their evolution with flow time. Then, the analysis of the running at low momenta of gluon Green's functions serves as an independent confirmation of the instanton density which can also be derived without the use of the Gradient flow.
引用
收藏
页数:28
相关论文
共 68 条
[51]   Instantons, the QCD vacuum, and hadronic physics [J].
Negele, JW .
NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 1999, 73 :92-104
[52]   REVIEW OF PARTICLE PHYSICS Particle Data Group [J].
Olive, K. A. ;
Agashe, K. ;
Amsler, C. ;
Antonelli, M. ;
Arguin, J. -F. ;
Asner, D. M. ;
Baer, H. ;
Band, H. R. ;
Barnett, R. M. ;
Basaglia, T. ;
Bauer, C. W. ;
Beatty, J. J. ;
Belousov, V. I. ;
Beringer, J. ;
Bernardi, G. ;
Bethke, S. ;
Bichsel, H. ;
Biebel, O. ;
Blucher, E. ;
Blusk, S. ;
Brooijmans, G. ;
Buchmueller, O. ;
Burkert, V. ;
Bychkov, M. A. ;
Cahn, R. N. ;
Carena, M. ;
Ceccucci, A. ;
Cerri, A. ;
Chakraborty, D. ;
Chen, M. -C. ;
Chivukula, R. S. ;
Copic, K. ;
Cowan, G. ;
Dahl, O. ;
D'Ambrosio, G. ;
Damour, T. ;
de Florian, D. ;
de Gouvea, A. ;
DeGrand, T. ;
de Jong, P. ;
Dissertori, G. ;
Dobrescu, B. A. ;
Doser, M. ;
Drees, M. ;
Dreiner, H. K. ;
Edwards, D. A. ;
Eidelman, S. ;
Erler, J. ;
Ezhela, V. V. ;
Fetscher, W. .
CHINESE PHYSICS C, 2014, 38 (09)
[53]   Running gluon mass from a Landau gauge lattice QCD propagator [J].
Oliveira, O. ;
Bicudo, P. .
JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2011, 38 (04)
[54]   Lattice Landau gauge gluon propagator: Lattice spacing and volume dependence [J].
Oliveira, Orlando ;
Silva, Paulo J. .
PHYSICAL REVIEW D, 2012, 86 (11)
[55]   Two-point correlation functions of QCD in the Landau gauge [J].
Pelaez, Marcela ;
Tissier, Matthieu ;
Wschebor, Nicolas .
PHYSICAL REVIEW D, 2014, 90 (06)
[56]   Three-point correlation functions in Yang-Mills theory [J].
Pelaez, Marcela ;
Tissier, Matthieu ;
Wschebor, Nicolas .
PHYSICAL REVIEW D, 2013, 88 (12)
[57]  
PEREZ MG, 1994, NUCL PHYS B, V413, P535, DOI 10.1016/0550-3213(94)90631-9
[58]   QUARK CONFINEMENT AND TOPOLOGY OF GAUGE THEORIES [J].
POLYAKOV, AM .
NUCLEAR PHYSICS B, 1977, 120 (03) :429-458
[59]   Instantons in QCD [J].
Schafer, T ;
Shuryak, EV .
REVIEWS OF MODERN PHYSICS, 1998, 70 (02) :323-425
[60]   TOWARD THE QUANTITATIVE THEORY OF THE INSTANTON LIQUID .2. THE SU(2) GLUODYNAMICS [J].
SHURYAK, EV .
NUCLEAR PHYSICS B, 1988, 302 (04) :574-598