Efficacy of a deep leaning model created with the transfer learning method in detecting sialoliths of the submandibular gland on panoramic radiography

被引:16
作者
Ishibashi, Kenichiro [1 ,2 ]
Ariji, Yoshiko [3 ]
Kuwada, Chiaki [3 ]
Kimura, Masashi [1 ,2 ]
Hashimoto, Kengo [2 ]
Umemura, Masahiro [2 ]
Nagao, Toru [1 ]
Ariji, Eiichiro [3 ]
机构
[1] Aichi Gakuin Univ, Sch Dent, Dept Maxillofacial Surg, Chikusa Ku, 2-11 Suemori Dori, Nagoya, Aichi 4648651, Japan
[2] Ogaki Municipal Hosp, Dept Oral & Maxillofacial Surg, Ogaki, Gifu, Japan
[3] Aichi Gakuin Univ, Sch Dent, Dept Oral & Maxillofacial Radiol, Chikusa Ku, Nagoya, Aichi, Japan
来源
ORAL SURGERY ORAL MEDICINE ORAL PATHOLOGY ORAL RADIOLOGY | 2022年 / 133卷 / 02期
关键词
D O I
10.1016/j.oooo.2021.08.010
中图分类号
R78 [口腔科学];
学科分类号
1003 ;
摘要
Objective. This study aimed to compare the performance of 3 deep learning models, including a model constructed with the transfer learning method, in detecting submandibular gland sialoliths on panoramic radiographs. Study Design. We used data from 2 institutions (A and B) to create the models for use in institution B. In total, 224 panoramic radiographs with sialoliths were used. Model 1 was created using data from institution A only, model 2 was created using combined data from institutions A and B, and model 3 was created using the transfer learning method by having model 1 transferred and trained in various learning epochs using data from institution B. These models were tested and compared in their detection performance using testing data sets from institution B. Results. Model 2 and model 3 with 300 epochs performed equally well and yielded the highest detection rates (recall: sensitivity of 85%, precision: positive predictive value of 100%, and F measure of 91.9%) for sialoliths on panoramic radiographs. Conclusion. The results of this study suggest that use of the transfer learning method with an appropriate number of epochs may be an alternative to sharing patient personal data among institutions.
引用
收藏
页码:238 / 244
页数:7
相关论文
共 23 条
[1]   Deep learning for segmentation of brain tumors: Impact of cross-institutional training and testing [J].
AlBadawy, Ehab A. ;
Saha, Ashirbani ;
Mazurowski, Maciej A. .
MEDICAL PHYSICS, 2018, 45 (03) :1150-1158
[2]   Automatic detection and classification of radiolucent lesions in the mandible on panoramic radiographs using a deep learning object detection technique [J].
Ariji, Yoshiko ;
Yanashita, Yudai ;
Kutsuna, Syota ;
Muramatsu, Chisako ;
Fukuda, Motoki ;
Kise, Yoshitaka ;
Nozawa, Michihito ;
Kuwada, Chiaki ;
Fujita, Hiroshi ;
Katsumata, Akitoshi ;
Ariji, Eiichiro .
ORAL SURGERY ORAL MEDICINE ORAL PATHOLOGY ORAL RADIOLOGY, 2019, 128 (04) :424-430
[3]   Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet [J].
Bien, Nicholas ;
Rajpurkar, Pranav ;
Ball, Robyn L. ;
Irvin, Jeremy ;
Park, Allison ;
Jones, Erik ;
Bereket, Michael ;
Patel, Bhavik N. ;
Yeom, Kristen W. ;
Shpanskaya, Katie ;
Halabi, Safwan ;
Zucker, Evan ;
Fanton, Gary ;
Amanatullah, Derek F. ;
Beaulieu, Christopher F. ;
Riley, Geoffrey M. ;
Stewart, Russell J. ;
Blankenberg, Francis G. ;
Larson, David B. ;
Jones, Ricky H. ;
Langlotz, Curtis P. ;
Ng, Andrew Y. ;
Lungren, Matthew P. .
PLOS MEDICINE, 2018, 15 (11)
[4]   Symptomatic sialoadenitis and sialolithiasis in the English population, an estimate of the cost of hospital treatment [J].
Escudier, MP ;
McGurk, M .
BRITISH DENTAL JOURNAL, 1999, 186 (09) :463-466
[5]   Evaluation of an artificial intelligence system for detecting vertical root fracture on panoramic radiography [J].
Fukuda, Motoki ;
Inamoto, Kyoko ;
Shibata, Naoki ;
Ariji, Yoshiko ;
Yanashita, Yudai ;
Kutsuna, Shota ;
Nakata, Kazuhiko ;
Katsumata, Akitoshi ;
Fujita, Hiroshi ;
Ariji, Eiichiro .
ORAL RADIOLOGY, 2020, 36 (04) :337-343
[6]  
Hagos M. T., 2019, ARXIV190507203
[7]  
Harrison John D, 2009, Otolaryngol Clin North Am, V42, P927, DOI 10.1016/j.otc.2009.08.012
[8]   Multi-Institutional Validation of Deep Learning for Pretreatment Identification of Extranodal Extension in Head and Neck Squamous Cell Carcinoma [J].
Kann, Benjamin H. ;
Hicks, Daniel F. ;
Payabvash, Sam ;
Mahajan, Amit ;
Du, Justin ;
Gupta, Vishal ;
Park, Henry S. ;
Yu, James B. ;
Yarbrough, Wendell G. ;
Burtness, Barbara A. ;
Husain, Zain A. ;
Aneja, Sanjay .
JOURNAL OF CLINICAL ONCOLOGY, 2020, 38 (12) :1304-+
[9]   Deep Learning in Diagnosis of Maxillary Sinusitis Using Conventional Radiography [J].
Kim, Youngjune ;
Lee, Kyong Joon ;
Sunwoo, Leonard ;
Choi, Dongjun ;
Nam, Chang-Mo ;
Cho, Jungheum ;
Kim, Jihyun ;
Bae, Yun Jung ;
Yoo, Roh-Eul ;
Choi, Byung Se ;
Jung, Cheolkyu ;
Kim, Jae Hyoung .
INVESTIGATIVE RADIOLOGY, 2019, 54 (01) :7-15
[10]  
Kisantal Mate, 2019, 9 INT C ADV COMP INF