THE CAUCHY PROBLEM FOR A FAMILY OF TWO-DIMENSIONAL FRACTIONAL BENJAMIN-ONO EQUATIONS

被引:7
作者
Bustamante, Eddye [1 ]
Jimenez Urrea, Jose [1 ]
Mejia, Jorge [1 ]
机构
[1] Univ Nacl Colombia, Dept Matemat, Medellin 3840, Colombia
关键词
Benjamin Ono equation; LOCAL WELL-POSEDNESS; SOLITARY WAVES; REGULARITY;
D O I
10.3934/cpaa.2019057
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we prove that the initial value problem (IVP) associated to the fractional two-dimensional Benjamin-Ono equation u(t) + D(x)(alpha)u(x) + Hu(yy) +uu(x) = 0 (x, y) is an element of R-2, t is an element of R,}, u(x, y, 0) = u(0)(x, y), where 0 < alpha <= 1, D-x(alpha) denotes the operator defined through the Fourier transform by (D(x)(alpha)f)boolean AND(xi, eta) :=vertical bar xi vertical bar(alpha)(f) over cap(xi, eta), (0.1) and H denotes the Hilbert transform with respect to the variable x, is locally well posed in the Sobolev space H-s (R-2) with s > 3/2 + 1/4 (1 - alpha).
引用
收藏
页码:1177 / 1203
页数:27
相关论文
共 26 条
[1]  
ABLOWITZ MJ, 1980, STUD APPL MATH, V62, P249
[2]   A Model Equation for Wavepacket Solitary Waves Arising from Capillary-Gravity Flows [J].
Akers, Benjamin ;
Milewski, Paul A. .
STUDIES IN APPLIED MATHEMATICS, 2009, 122 (03) :249-274
[3]  
[Anonymous], 1991, SOLITONS NONLINEAR E
[4]  
[Anonymous], 2006, THESIS
[5]   INITIAL-VALUE PROBLEM FOR KORTEWEG-DEVRIES EQUATION [J].
BONA, JL ;
SMITH, R .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1975, 278 (1287) :555-601
[6]   The IVP for the Benjamin-Ono-Zakharov-Kuznetsov equation in low regularity Sobolev spaces [J].
Cunha, Alysson ;
Pastor, Ademir .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (03) :2041-2067
[7]   Two dimensional solitary waves in shear flows [J].
Esfahani, Amin ;
Pastor, Ademir .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (04)
[8]   ILL-POSEDNESS RESULTS FOR THE (GENERALIZED) BENJAMIN-ONO-ZAKHAROV-KUZNETSOV EQUATION [J].
Esfahani, Amin ;
Pastor, Ademir .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (03) :943-956
[9]   KORTEWEG-DE-VRIES EQUATION [J].
KATO, T .
MANUSCRIPTA MATHEMATICA, 1979, 28 (1-3) :89-99
[10]   COMMUTATOR ESTIMATES AND THE EULER AND NAVIER-STOKES EQUATIONS [J].
KATO, T ;
PONCE, G .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) :891-907