INFLATING BALLS IS NP-HARD

被引:0
|
作者
Batog, Guillaume [1 ]
Goaoc, Xavier [2 ]
机构
[1] Univ Nancy 2, LORIA, F-54506 Villers Les Nancy, France
[2] INRIA Nancy Grand Est, LORIA, F-54506 Villers Les Nancy, France
关键词
Geometric transversal; disjoint unit ball; inflation; DISJOINT UNIT BALLS; GEOMETRIC PERMUTATIONS; LINE TRANSVERSALS; CONVEX-SETS; R-D; THEOREM; NUMBER; COMPUTATION; BOUNDS; R-3;
D O I
10.1142/S0218195911003731
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A collection C of balls in R(d) is delta-inflantable if it is isometric to the intersection U boolean AND E of some d-dimensional affine subspace E with a collection U of (d + delta)-dimensional balls that are disjoint and have equal radius. We give a quadratic-time algorithm to recognize 1-inflatable collections of balls in any fixed dimension, and show that recognizing delta-inflatable collections of 3-dimensional balls is NP-hard for delta >= 2 and d >= 3 if the balls' centers and radii are given by numbers of the from a + b root c + d root e, where a, ... , c are integers.
引用
收藏
页码:403 / 415
页数:13
相关论文
共 50 条
  • [31] Computing the Interleaving Distance is NP-Hard
    Håvard Bakke Bjerkevik
    Magnus Bakke Botnan
    Michael Kerber
    Foundations of Computational Mathematics, 2020, 20 : 1237 - 1271
  • [32] Dynamic Programming for NP-Hard Problems
    Wang, Xiaodong
    Tian, Jun
    CEIS 2011, 2011, 15
  • [33] Restricted optimal pebbling is NP-hard
    Papp, Laszlo F.
    DISCRETE APPLIED MATHEMATICS, 2024, 357 : 258 - 263
  • [34] CHECKING ROBUST NONSINGULARITY IS NP-HARD
    POLJAK, S
    ROHN, J
    MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 1993, 6 (01) : 1 - 9
  • [35] RECOGNIZING TOUGH GRAPHS IS NP-HARD
    BAUER, D
    HAKIMI, SL
    SCHMEICHEL, E
    DISCRETE APPLIED MATHEMATICS, 1990, 28 (03) : 191 - 195
  • [37] The Fault Tolerance of NP-Hard Problems
    Glasser, Christian
    Pavan, A.
    Travers, Stephen
    LANGUAGE AND AUTOMATA THEORY AND APPLICATIONS, 2009, 5457 : 374 - +
  • [38] Finding the Best CAFE Is NP-Hard
    Maltais, Elizabeth
    Moura, Lucia
    LATIN 2010: THEORETICAL INFORMATICS, 2010, 6034 : 356 - 371
  • [39] (2+ε)-SAT IS NP-HARD
    Austrin, Per
    Guruswami, Venkatesan
    Hastad, Johan
    SIAM JOURNAL ON COMPUTING, 2017, 46 (05) : 1554 - 1573
  • [40] THE STO-PROBLEM IS NP-HARD
    APT, KR
    BOAS, PV
    WELLING, A
    JOURNAL OF SYMBOLIC COMPUTATION, 1994, 18 (05) : 489 - 495