INFLATING BALLS IS NP-HARD

被引:0
|
作者
Batog, Guillaume [1 ]
Goaoc, Xavier [2 ]
机构
[1] Univ Nancy 2, LORIA, F-54506 Villers Les Nancy, France
[2] INRIA Nancy Grand Est, LORIA, F-54506 Villers Les Nancy, France
关键词
Geometric transversal; disjoint unit ball; inflation; DISJOINT UNIT BALLS; GEOMETRIC PERMUTATIONS; LINE TRANSVERSALS; CONVEX-SETS; R-D; THEOREM; NUMBER; COMPUTATION; BOUNDS; R-3;
D O I
10.1142/S0218195911003731
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A collection C of balls in R(d) is delta-inflantable if it is isometric to the intersection U boolean AND E of some d-dimensional affine subspace E with a collection U of (d + delta)-dimensional balls that are disjoint and have equal radius. We give a quadratic-time algorithm to recognize 1-inflatable collections of balls in any fixed dimension, and show that recognizing delta-inflatable collections of 3-dimensional balls is NP-hard for delta >= 2 and d >= 3 if the balls' centers and radii are given by numbers of the from a + b root c + d root e, where a, ... , c are integers.
引用
收藏
页码:403 / 415
页数:13
相关论文
共 50 条
  • [1] Trainyard is NP-Hard
    Almanza, Matteo
    Leucci, Stefano
    Panconesi, Alessandro
    THEORETICAL COMPUTER SCIENCE, 2018, 748 : 66 - 76
  • [2] Polynomial algorithms that prove an NP-hard hypothesis implies an NP-hard conclusion
    Bauer, D
    Broersma, HJ
    Morgana, A
    Schmeichel, E
    DISCRETE APPLIED MATHEMATICS, 2002, 120 (1-3) : 13 - 23
  • [3] Automating Resolution is NP-Hard
    Atserias, Albert
    Mueller, Moritz
    2019 IEEE 60TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2019), 2019, : 498 - 509
  • [4] TERRAIN GUARDING IS NP-HARD
    King, James
    Krohn, Erik
    SIAM JOURNAL ON COMPUTING, 2011, 40 (05) : 1316 - 1339
  • [5] Terrain Guarding is NP-Hard
    King, James
    Krohn, Erik
    PROCEEDINGS OF THE TWENTY-FIRST ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2010, 135 : 1580 - +
  • [6] STORAGE ALLOCATION IS NP-HARD
    ROBSON, JM
    INFORMATION PROCESSING LETTERS, 1980, 11 (03) : 119 - 125
  • [7] Automating Resolution is NP-Hard
    Atserias, Albert
    Muller, Moritz
    JOURNAL OF THE ACM, 2020, 67 (05)
  • [8] Protein design is NP-hard
    Pierce, NA
    Winfree, E
    PROTEIN ENGINEERING, 2002, 15 (10): : 779 - 782
  • [9] Unshuffling a square is NP-hard
    Buss, Sam
    Soltys, Michael
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2014, 80 (04) : 766 - 776
  • [10] RIGID FOLDABILITY IS NP-HARD
    Akitaya, Hugo A.
    Demaine, Erik D.
    Horiyama, Takashi
    Hull, Thomas C.
    Ku, Jason S.
    Tachi, Tomohiro
    JOURNAL OF COMPUTATIONAL GEOMETRY, 2020, 11 (01) : 93 - 124