Limits and potential of combined folding and docking

被引:16
作者
Pozzati, Gabriele [1 ,2 ]
Zhu, Wensi [1 ,2 ]
Bassot, Claudio [1 ,2 ]
Lamb, John [1 ,2 ]
Kundrotas, Petras [1 ,2 ,3 ]
Elofsson, Arne [1 ,2 ]
机构
[1] Stockholm Univ, Sci Life Lab, S-17121 Solna, Sweden
[2] Stockholm Univ, Dept Biochem & Biophys, S-17121 Solna, Sweden
[3] Univ Kansas, Ctr Computat Biol, Lawrence, KS 66047 USA
基金
瑞典研究理事会;
关键词
PROTEIN-PROTEIN DOCKING; DIRECT-COUPLING ANALYSIS; RESIDUE CONTACTS; STRUCTURAL BASIS; NATIVE CONTACTS; PREDICTION; COMPLEXES; RECOGNITION; CONSENSUS; NETWORKS;
D O I
10.1093/bioinformatics/btab760
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: In the last decade, de novo protein structure prediction accuracy for individual proteins has improved significantly by utilising deep learning (DL) methods for harvesting the co-evolution information from large multiple sequence alignments (MSAs). The same approach can, in principle, also be used to extract information about evolutionary-based contacts across protein-protein interfaces. However, most earlier studies have not used the latest DL methods for inter-chain contact distance prediction. This article introduces a fold-and-dock method based on predicted residue-residue distances with trRosetta. Results: The method can simultaneously predict the tertiary and quaternary structure of a protein pair, even when the structures of the monomers are not known. The straightforward application of this method to a standard dataset for protein-protein docking yielded limited success. However, using alternative methods for generating MSAs allowed us to dock accurately significantly more proteins. We also introduced a novel scoring function, PconsDock, that accurately separates 98% of correctly and incorrectly folded and docked proteins. The average performance of the method is comparable to the use of traditional, template-based or ab initio shape-complementarity-only docking methods. Moreover, the results of conventional and fold-and-dock approaches are complementary, and thus a combined docking pipeline could increase overall docking success significantly. This methodology contributed to the best model for one of the CASP14 oligomeric targets, H1065.
引用
收藏
页码:954 / 961
页数:8
相关论文
共 53 条
[1]   Advances, Interactions, and Future Developments in the CNS, Phenix, and Rosetta Structural Biology Software Systems [J].
Adams, Paul D. ;
Baker, David ;
Brunger, Axel T. ;
Das, Rhiju ;
DiMaio, Frank ;
Read, Randy J. ;
Richardson, David C. ;
Richardson, Jane S. ;
Terwilliger, Thomas C. .
ANNUAL REVIEW OF BIOPHYSICS, VOL 42, 2013, 42 :265-287
[2]   Contact Potential for Structure Prediction of Proteins and Protein Complexes from Potts Model [J].
Anishchenko, Ivan ;
Kundrotas, Petras J. ;
Vakser, Ilya A. .
BIOPHYSICAL JOURNAL, 2018, 115 (05) :809-821
[3]   Modeling complexes of modeled proteins [J].
Anishchenko, Ivan ;
Kundrotas, Petras J. ;
Vakser, Ilya A. .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2017, 85 (03) :470-478
[4]   Accurate prediction of protein structures and interactions using a three-track neural network [J].
Baek, Minkyung ;
DiMaio, Frank ;
Anishchenko, Ivan ;
Dauparas, Justas ;
Ovchinnikov, Sergey ;
Lee, Gyu Rie ;
Wang, Jue ;
Cong, Qian ;
Kinch, Lisa N. ;
Schaeffer, R. Dustin ;
Millan, Claudia ;
Park, Hahnbeom ;
Adams, Carson ;
Glassman, Caleb R. ;
DeGiovanni, Andy ;
Pereira, Jose H. ;
Rodrigues, Andria V. ;
van Dijk, Alberdina A. ;
Ebrecht, Ana C. ;
Opperman, Diederik J. ;
Sagmeister, Theo ;
Buhlheller, Christoph ;
Pavkov-Keller, Tea ;
Rathinaswamy, Manoj K. ;
Dalwadi, Udit ;
Yip, Calvin K. ;
Burke, John E. ;
Garcia, K. Christopher ;
Grishin, Nick V. ;
Adams, Paul D. ;
Read, Randy J. ;
Baker, David .
SCIENCE, 2021, 373 (6557) :871-+
[5]   The Universal Protein Resource (UniProt) 2009 [J].
Bairoch, Amos ;
Consortium, UniProt ;
Bougueleret, Lydie ;
Altairac, Severine ;
Amendolia, Valeria ;
Auchincloss, Andrea ;
Argoud-Puy, Ghislaine ;
Axelsen, Kristian ;
Baratin, Delphine ;
Blatter, Marie-Claude ;
Boeckmann, Brigitte ;
Bolleman, Jerven ;
Bollondi, Laurent ;
Boutet, Emmanuel ;
Quintaje, Silvia Braconi ;
Breuza, Lionel ;
Bridge, Alan ;
deCastro, Edouard ;
Ciapina, Luciane ;
Coral, Danielle ;
Coudert, Elisabeth ;
Cusin, Isabelle ;
Delbard, Gwennaelle ;
Dornevil, Dolnide ;
Roggli, Paula Duek ;
Duvaud, Severine ;
Estreicher, Anne ;
Famiglietti, Livia ;
Feuermann, Marc ;
Gehant, Sebastian ;
Farriol-Mathis, Nathalie ;
Ferro, Serenella ;
Gasteiger, Elisabeth ;
Gateau, Alain ;
Gerritsen, Vivienne ;
Gos, Arnaud ;
Gruaz-Gumowski, Nadine ;
Hinz, Ursula ;
Hulo, Chantal ;
Hulo, Nicolas ;
James, Janet ;
Jimenez, Silvia ;
Jungo, Florence ;
Junker, Vivien ;
Kappler, Thomas ;
Keller, Guillaume ;
Lachaize, Corinne ;
Lane-Guermonprez, Lydie ;
Langendijk-Genevaux, Petra ;
Lara, Vicente .
NUCLEIC ACIDS RESEARCH, 2009, 37 :D169-D174
[6]   DockQ: A Quality Measure for Protein-Protein Docking Models [J].
Basu, Sankar ;
Wallner, Bjorn .
PLOS ONE, 2016, 11 (08)
[7]   UniProt: a worldwide hub of protein knowledge [J].
Bateman, Alex ;
Martin, Maria-Jesus ;
Orchard, Sandra ;
Magrane, Michele ;
Alpi, Emanuele ;
Bely, Benoit ;
Bingley, Mark ;
Britto, Ramona ;
Bursteinas, Borisas ;
Busiello, Gianluca ;
Bye-A-Jee, Hema ;
Da Silva, Alan ;
De Giorgi, Maurizio ;
Dogan, Tunca ;
Castro, Leyla Garcia ;
Garmiri, Penelope ;
Georghiou, George ;
Gonzales, Daniel ;
Gonzales, Leonardo ;
Hatton-Ellis, Emma ;
Ignatchenko, Alexandr ;
Ishtiaq, Rizwan ;
Jokinen, Petteri ;
Joshi, Vishal ;
Jyothi, Dushyanth ;
Lopez, Rodrigo ;
Luo, Jie ;
Lussi, Yvonne ;
MacDougall, Alistair ;
Madeira, Fabio ;
Mahmoudy, Mahdi ;
Menchi, Manuela ;
Nightingale, Andrew ;
Onwubiko, Joseph ;
Palka, Barbara ;
Pichler, Klemens ;
Pundir, Sangya ;
Qi, Guoying ;
Raj, Shriya ;
Renaux, Alexandre ;
Lopez, Milagros Rodriguez ;
Saidi, Rabie ;
Sawford, Tony ;
Shypitsyna, Aleksandra ;
Speretta, Elena ;
Turner, Edward ;
Tyagi, Nidhi ;
Vasudev, Preethi ;
Volynkin, Vladimir ;
Wardell, Tony .
NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) :D506-D515
[8]   Inferring interaction partners from protein sequences using mutual information [J].
Bitbol, Anne-Florence .
PLOS COMPUTATIONAL BIOLOGY, 2018, 14 (11)
[9]   PyRosetta: a script-based interface for implementing molecular modeling algorithms using Rosetta [J].
Chaudhury, Sidhartha ;
Lyskov, Sergey ;
Gray, Jeffrey J. .
BIOINFORMATICS, 2010, 26 (05) :689-691
[10]   Protein interaction networks revealed by proteome coevolution [J].
Cong, Qian ;
Anishchenko, Ivan ;
Ovchinnikov, Sergey ;
Baker, David .
SCIENCE, 2019, 365 (6449) :185-+