Real-time quantum feedback prepares and stabilizes photon number states

被引:455
作者
Sayrin, Clement [1 ]
Dotsenko, Igor [1 ]
Zhou, Xingxing [1 ]
Peaudecerf, Bruno [1 ]
Rybarczyk, Theo [1 ]
Gleyzes, Sebastien [1 ]
Rouchon, Pierre [2 ]
Mirrahimi, Mazyar [3 ]
Amini, Hadis [2 ]
Brune, Michel [1 ]
Raimond, Jean-Michel [1 ]
Haroche, Serge [1 ,4 ]
机构
[1] UPMC Paris 6, ENS, CNRS, Lab Kastler Brossel, F-75005 Paris, France
[2] Mines ParisTech, Ctr Automat & Syst Math & Syst, F-75272 Paris 6, France
[3] INRIA Paris Rocquencourt, F-78153 Le Chesnay, France
[4] Coll France, F-75231 Paris 05, France
关键词
RADIATION-FIELD; ERROR; COHERENT; ENTANGLEMENT; CIRCUIT; CAVITY;
D O I
10.1038/nature10376
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Feedback loops are central to most classical control procedures. A controller compares the signal measured by a sensor (system output) with the target value or set-point. It then adjusts an actuator (system input) to stabilize the signal around the target value. Generalizing this scheme to stabilize a micro-system's quantum state relies on quantum feedback(1-3), which must overcome a fundamental difficulty: the sensor measurements cause a random back-action on the system. An optimal compromise uses weak measurements(4,5), providing partial information with minimal perturbation. The controller should include the effect of this perturbation in the computation of the actuator's operation, which brings the incrementally perturbed state closer to the target. Although some aspects of this scenario have been experimentally demonstrated for the control of quantum(6-9) or classical(10,11) micro-system variables, continuous feedback loop operations that permanently stabilize quantum systems around a target state have not yet been realized. Here we have implemented such a real-time stabilizing quantum feedback scheme(12) following a method inspired by ref. 13. It prepares on demand photon number states (Fock states) of a microwave field in a superconducting cavity, and subsequently reverses the effects of decoherence-induced field quantum jumps(14-16). The sensor is a beam of atoms crossing the cavity, which repeatedly performs weak quantum non-demolition measurements of the photon number(14). The controller is implemented in a real-time computer commanding the actuator, which injects adjusted small classical fields into the cavity between measurements. The microwave field is a quantum oscillator usable as a quantum memory(17) or as a quantum bus swapping information between atoms(18). Our experiment demonstrates that active control can generate non-classical states of this oscillator and combat their decoherence(15,16), and is a significant step towards the implementation of complex quantum information operations.
引用
收藏
页码:73 / 77
页数:5
相关论文
共 30 条
[1]   PROPERTIES OF A QUANTUM SYSTEM DURING THE TIME INTERVAL BETWEEN 2 MEASUREMENTS [J].
AHARONOV, Y ;
VAIDMAN, L .
PHYSICAL REVIEW A, 1990, 41 (01) :11-20
[2]  
[Anonymous], 2002, NONLINEAR SYSTEMS
[3]   Process Tomography of Field Damping and Measurement of Fock State Lifetimes by Quantum Nondemolition Photon Counting in a Cavity [J].
Brune, M. ;
Bernu, J. ;
Guerlin, C. ;
Deleglise, S. ;
Sayrin, C. ;
Gleyzes, S. ;
Kuhr, S. ;
Dotsenko, I. ;
Raimond, J. M. ;
Haroche, S. .
PHYSICAL REVIEW LETTERS, 2008, 101 (24)
[4]   Feedback cooling of a single trapped ion [J].
Bushev, P ;
Rotter, D ;
Wilson, A ;
Dubin, F ;
Becher, C ;
Eschner, J ;
Blatt, R ;
Steixner, V ;
Rabl, P ;
Zoller, P .
PHYSICAL REVIEW LETTERS, 2006, 96 (04)
[5]   Optical coherent state discrimination using a closed-loop quantum measurement [J].
Cook, Robert L. ;
Martin, Paul J. ;
Geremia, J. M. .
NATURE, 2007, 446 (7137) :774-777
[6]   Preparation and measurement of three-qubit entanglement in a superconducting circuit [J].
DiCarlo, L. ;
Reed, M. D. ;
Sun, L. ;
Johnson, B. R. ;
Chow, J. M. ;
Gambetta, J. M. ;
Frunzio, L. ;
Girvin, S. M. ;
Devoret, M. H. ;
Schoelkopf, R. J. .
NATURE, 2010, 467 (7315) :574-578
[7]   Quantum feedback control and classical control theory [J].
Doherty, AC ;
Habib, S ;
Jacobs, K ;
Mabuchi, H ;
Tan, SM .
PHYSICAL REVIEW A, 2000, 62 (01) :13
[8]   Quantum feedback by discrete quantum nondemolition measurements: Towards on-demand generation of photon-number states [J].
Dotsenko, I. ;
Mirrahimi, M. ;
Brune, M. ;
Haroche, S. ;
Raimond, J. -M. ;
Rouchon, P. .
PHYSICAL REVIEW A, 2009, 80 (01)
[9]   Deterministic and nondestructively verifiable preparation of photon number states [J].
Geremia, J. M. .
PHYSICAL REVIEW LETTERS, 2006, 97 (07)
[10]   Experimental Feedback Control of Quantum Systems Using Weak Measurements [J].
Gillett, G. G. ;
Dalton, R. B. ;
Lanyon, B. P. ;
Almeida, M. P. ;
Barbieri, M. ;
Pryde, G. J. ;
O'Brien, J. L. ;
Resch, K. J. ;
Bartlett, S. D. ;
White, A. G. .
PHYSICAL REVIEW LETTERS, 2010, 104 (08)