Constructing and decoding unconventional ubiquitin chains

被引:183
作者
Behrends, Christian [3 ]
Harper, J. Wade [1 ,2 ]
机构
[1] Harvard Univ, Sch Med, Dept Pathol, Boston, MA 02115 USA
[2] Harvard Univ, Sch Med, Dept Cell Biol, Boston, MA 02115 USA
[3] Goethe Univ Frankfurt, Sch Med, Inst Biochem 2, Frankfurt, Germany
基金
美国国家卫生研究院;
关键词
MULTIUBIQUITIN CHAIN; K11-LINKED POLYUBIQUITINATION; CRYSTAL-STRUCTURE; STRUCTURAL BASIS; RIG-I; PROTEIN; COMPLEX; REVEALS; SHARPIN; BINDING;
D O I
10.1038/nsmb.2066
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
One of the most notable discoveries in the ubiquitin system during the past decade is the extensive use of diverse chain linkages to control signaling networks. Although the utility of Lys48- and Lys63-linked chains in protein turnover and molecular assembly, respectively, are well known, we are only beginning to understand how unconventional chain linkages are formed on target proteins and how such linkages are decoded by specific binding proteins. In this review, we summarize recent efforts to elucidate the machinery and mechanisms controlling assembly of Lys11-linked and linear (or Met1-linked) ubiquitin chains, and describe current models for how these chain types function in immune signaling and cell-cycle control.
引用
收藏
页码:520 / 528
页数:9
相关论文
共 71 条
[1]   Novel multiubiquitin chain linkages catalyzed by the conjugating enzymes E2(EPF) and RAD6 are recognized by 26 S proteasome subunit 5 [J].
Baboshina, OV ;
Haas, AL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (05) :2823-2831
[2]   Global impairment of the ubiquitin-proteasome system by nuclear or cytoplasmic protein aggregates precedes inclusion body formation [J].
Bennett, EJ ;
Bence, NF ;
Jayakumar, R ;
Kopito, RR .
MOLECULAR CELL, 2005, 17 (03) :351-365
[3]   cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination [J].
Bertrand, Mathieu J. M. ;
Milutinovic, Snezana ;
Dickson, Kathleen M. ;
Ho, Wai Chi ;
Boudreault, Alain ;
Durkin, Jon ;
Gillard, John W. ;
Jaquith, James B. ;
Morris, Stephen J. ;
Barker, Philip A. .
MOLECULAR CELL, 2008, 30 (06) :689-700
[4]   A Tangled Web of Ubiquitin Chains: Breaking News in TNF-R1 Signaling [J].
Bianchi, Katiuscia ;
Meier, Pascal .
MOLECULAR CELL, 2009, 36 (05) :736-742
[5]   Lys11-linked ubiquitin chains adopt compact conformations and are preferentially hydrolyzed by the deubiquitinase Cezanne [J].
Bremm, Anja ;
Freund, Stefan M. V. ;
Komander, David .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2010, 17 (08) :939-U47
[6]   A MULTIUBIQUITIN CHAIN IS CONFINED TO SPECIFIC LYSINE IN A TARGETED SHORT-LIVED PROTEIN [J].
CHAU, V ;
TOBIAS, JW ;
BACHMAIR, A ;
MARRIOTT, D ;
ECKER, DJ ;
GONDA, DK ;
VARSHAVSKY, A .
SCIENCE, 1989, 243 (4898) :1576-1583
[7]   The Zinc Finger of NEMO Is a Functional Ubiquitin-binding Domain [J].
Cordier, Florence ;
Grubisha, Olivera ;
Traincard, Francois ;
Veron, Michel ;
Delepierre, Muriel ;
Agou, Fabrice .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2009, 284 (05) :2902-2907
[8]   Polyubiquitin Linkage Profiles in Three Models of Proteolytic Stress Suggest the Etiology of Alzheimer Disease [J].
Dammer, Eric B. ;
Na, Chan Hyun ;
Xu, Ping ;
Seyfried, Nicholas T. ;
Duong, Duc M. ;
Cheng, Dongmei ;
Gearing, Marla ;
Rees, Howard ;
Lah, James J. ;
Levey, Allan I. ;
Rush, John ;
Peng, Junmin .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2011, 286 (12) :10457-10465
[9]   RING Domain E3 Ubiquitin Ligases [J].
Deshaies, Raymond J. ;
Joazeiro, Claudio A. P. .
ANNUAL REVIEW OF BIOCHEMISTRY, 2009, 78 :399-434
[10]   Ubiquitin-binding domains - from structures to functions [J].
Dikic, Ivan ;
Wakatsuki, Soichi ;
Walters, Kylie J. .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2009, 10 (10) :659-671