MRI-Based Radiomics of Rectal Cancer: Assessment of the Local Recurrence at the Site of Anastomosis

被引:21
作者
Chen, Fangying [1 ]
Ma, Xiaolu [1 ]
Li, Shuai [1 ]
Li, Zhihui [1 ]
Jia, Yan [2 ]
Xia, Yuwei [2 ]
Wang, Minjie [1 ]
Shen, Fu [1 ]
Lu, Jianping [1 ]
机构
[1] Changhai Hosp, Dept Radiol, 168 Changhai Rd, Shanghai 200433, Peoples R China
[2] Huiying Med Technol Co Ltd, Beijing, Peoples R China
关键词
Rectal cancer; MRI; Local recurrence; Radiomics; Anastomosis; DCE-MRI; RADIOTHERAPY;
D O I
10.1016/j.acra.2020.09.024
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Rationale and Objective: To investigate the significance of magnetic resonance imaging (MRI)-based radiomics model in differentiating local recurrence of rectal cancer from nonrecurrence lesions at the site of anastomosis. Materials and Methods: A total of 80 patients with clinically suspected lesions of anastomosis underwent 3.0T pelvic MRI consisting of T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), and contrast-enhanced T1-weighted volume interpolated body examination (VIBE) imaging. Radiomics features were extracted from volumes of interest (VOIs), delineated manually on multiple MRI sequences. Subsequently, principal component analysis reduced the dimensionality of features for T2WI, DWI, VIBE, and combined multisequences, respectively. On this basis, the extreme gradient boosting (XGBoost) classifier was trained to build ModelT2WI, ModelDWI, ModelVIBE, and Modelcombination. Receiver operating characteristic curves were generated to determine the diagnostic performance of various models. Results: Principal component analysis selected eight, four, seven, and six principal components to construct the radiomics model for T2WI, DWI, VIBE, and combined multisequences, respectively. Modelcombination had an area under the receiver operating characteristic curve of 0.864, with sensitivity and specificity of 81.82% and 75.86% in the validation set, demonstrating a more optimal performance compared to other models (p< 0.05). The decision curve analysis confirmed the clinical usefulness of the model. Conclusion: This study demonstrated that MRI-based radiomics is a sophisticated and noninvasive tool for accurately distinguishing LR from nonrecurrence lesions at the site of anastomosis. Combining multiple sequences significantly improves its performance.
引用
收藏
页码:S87 / S94
页数:8
相关论文
共 35 条
[1]   Rectal Cancer, Version 2.2018 Clinical Practice Guidelines in Oncology [J].
Benson, Al B., III ;
Venook, Alan P. ;
Al-Hawary, Mahmoud M. ;
Cederquist, Lynette ;
Chen, Yi-Jen ;
Ciombor, Kristen K. ;
Cohen, Stacey ;
Cooper, Harry S. ;
Deming, Dustin ;
Engstrom, Paul F. ;
Grem, Jean L. ;
Grothey, Axel ;
Hochster, Howard S. ;
Hoffe, Sarah ;
Hunt, Steven ;
Kamel, Ahmed ;
Kirilcuk, Natalie ;
Krishnamurthi, Smitha ;
Messersmith, Wells A. ;
Meyerhardt, Jeffrey ;
Mulcahy, Mary F. ;
Murphy, James D. ;
Nurkin, Steven ;
Saltz, Leonard ;
Sharma, Sunil ;
Shibata, David ;
Skibber, John M. ;
Sofocleous, Constantinos T. ;
Stoffel, Elena M. ;
Stotsky-Himelfarb, Eden ;
Willett, Christopher G. ;
Wuthrick, Evan ;
Gregory, Kristina M. ;
Gurski, Lisa ;
Freedman-Cass, Deborah A. .
JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2018, 16 (07) :874-901
[2]   HIV-1 tropism prediction by the XGboost and HMM methods [J].
Chen, Xiang ;
Wang, Zhi-Xin ;
Pan, Xian-Ming .
SCIENTIFIC REPORTS, 2019, 9 (1)
[3]   Differentiation of recurrent rectal cancer and scarring with dynamic MR imaging [J].
Dicle, O ;
Obuz, F ;
Çakmakci, H .
BRITISH JOURNAL OF RADIOLOGY, 1999, 72 (864) :1155-1159
[4]   Functional principal component analysis of glomerular filtration rate curves after kidney transplant [J].
Dong, Jianghu J. ;
Wang, Liangliang ;
Gill, Jagbir ;
Cao, Jiguo .
STATISTICAL METHODS IN MEDICAL RESEARCH, 2018, 27 (12) :3785-3796
[5]  
Falzon O, 2018, IEEE ENG MED BIO, P5664, DOI 10.1109/EMBC.2018.8513497
[6]   Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012 [J].
Ferlay, Jacques ;
Soerjomataram, Isabelle ;
Dikshit, Rajesh ;
Eser, Sultan ;
Mathers, Colin ;
Rebelo, Marise ;
Parkin, Donald Maxwell ;
Forman, David ;
Bray, Freddie .
INTERNATIONAL JOURNAL OF CANCER, 2015, 136 (05) :E359-E386
[7]   Swedish rectal cancer trial: Long lasting benefits from radiotherapy on survival and local recurrence rate [J].
Folkesson, J ;
Birgisson, H ;
Pahlman, L ;
Cedermark, B ;
Glimelius, B ;
Gunnarsson, U .
JOURNAL OF CLINICAL ONCOLOGY, 2005, 23 (24) :5644-5650
[8]   Radiomics: Images Are More than Pictures, They Are Data [J].
Gillies, Robert J. ;
Kinahan, Paul E. ;
Hricak, Hedvig .
RADIOLOGY, 2016, 278 (02) :563-577
[9]   Rectal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up (vol 28, pg 22, 2017) [J].
Glynne-Jones, R. ;
Wyrwicz, L. ;
Tiret, E. ;
Brown, G. ;
Rodel, C. ;
Cervantes, A. ;
Arnold, D. .
ANNALS OF ONCOLOGY, 2018, 29 :263-263
[10]   Prognostic Aspects of DCE-MRI in Recurrent Rectal Cancer [J].
Gollub, M. J. ;
Cao, K. ;
Gultekin, D. H. ;
Kuk, D. ;
Gonen, M. ;
Sohn, M. ;
Schwartz, L. H. ;
Weiser, M. R. ;
Temple, L. K. ;
Nash, G. M. ;
Guillem, J. G. ;
Wang, M. ;
Garcia-Aguilar, J. ;
Goodman, K. ;
Paty, P. B. .
EUROPEAN RADIOLOGY, 2013, 23 (12) :3336-3344