EMBEDDINGS BETWEEN WEIGHTED COPSON AND CESARO FUNCTION SPACES

被引:9
作者
Gogatishvili, Amiran [1 ]
Mustafayev, Rza [2 ,3 ]
Unver, Tugce [3 ]
机构
[1] Czech Acad Sci, Inst Math, Zitna 25, Prague 11567 1, Czech Republic
[2] Azerbaijan Acad Sci, Inst Math & Mech, B Vahabzade St 9, AZ-1141 Baku, Azerbaijan
[3] Kirikkale Univ, Fac Sci & Arts, Dept Math, TR-71450 Yahsihan, Kirikkale, Turkey
基金
美国国家科学基金会;
关键词
Cesaro and Copson function spaces; embedding; iterated Hardy inequalities; INEQUALITIES; OPERATORS; SEQUENCE; INTERPOLATION;
D O I
10.21136/CMJ.2017.0424-16
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, characterizations of the embeddings between weighted Copson function spaces Cop(p1,q1)(u(1),v(1)) and weighted Cesaro function spaces Ces(p2,q2) (u(2) , v(2)) are given. In particular, two-sided estimates of the optimal constant c in the inequality (integral(infinity)(0) (integral(t)(0) f(tau)(p2)v2(tau)d tau)(q2/p2) u2(t)dt)(1/q2)& para;& para;<= c(integral(infinity)(0) (integral(t)infinity f(tau)(p1)v1(tau)d tau)(q1/p1) u1(t)dt)(1/q1), where p(1), p(2), q(1), q(2) is an element of (0,infinity), p(2) <= q(2) and u(1), u(2), v(1), v(2) are weights on (0,infinity) are obtained. The most innovative part consists of the fact that possibly different parameters p1 and p2 and possibly different inner weights v(1) and v(2) are allowed. The proof is based on the combination of duality techniques with estimates of optimal constants of the embeddings between weighted Cesaro and Copson spaces and weighted Lebesgue spaces, which reduce the problem to the solutions of iterated Hardy-type inequalities.
引用
收藏
页码:1105 / 1132
页数:28
相关论文
共 40 条
[1]  
[Anonymous], 1968, Nieuw Arch. Wisk, V16, P47
[2]  
Askey R., 1970, SOME INTEGRABILITY T, P23
[3]   On the geometric properties of Cesaro spaces [J].
Astashkin, S. V. .
SBORNIK MATHEMATICS, 2012, 203 (04) :514-533
[4]   Geometry of CesA ro function spaces [J].
Astashkin, S. V. ;
Maligranda, L. .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2011, 45 (01) :64-68
[5]  
Astashkin S.V., 2014, Banach Center Publ., V102, P13
[6]  
Astashkin S. V., 2014, Banach and Function Spaces IV, P123
[7]   Cesaro function spaces fail the fixed point property [J].
Astashkin, Sergei V. ;
Maligranda, Lech .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (12) :4289-4294
[8]   Rademacher functions in Cesaro type spaces [J].
Astashkin, Sergei V. ;
Maligranda, Lech .
STUDIA MATHEMATICA, 2010, 198 (03) :235-247
[9]   Structure of Cesaro function spaces' [J].
Astashkin, Sergei V. ;
Maligranda, Lech .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2009, 20 (03) :329-379
[10]   Interpolation of Cesaro sequence and function spaces [J].
Astashkin, Sergey V. ;
Maligranda, Lech .
STUDIA MATHEMATICA, 2013, 215 (01) :39-69