An efficient difference scheme for the non-Fickian time-fractional diffusion equations with variable coefficient

被引:2
作者
Feng, Zhouping [1 ]
Ran, Maohua [1 ]
Liu, Yang [1 ]
机构
[1] Sichuan Normal Univ, Sch Math Sci, Chengdu 610066, Peoples R China
基金
中国国家自然科学基金;
关键词
Non-Fickian diffusion equation; Fractional derivative; Stability; Convergence;
D O I
10.1016/j.aml.2021.107489
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we develop an efficient difference scheme for the non-Fickian time-fractional diffusion equations with variable coefficient. This model may be considered as a generalization of the Kolmogorov-Petrovskii-Piskunov type equation, which is widely used to describe some important phenomena in the fields of chemistry, biology and viscoelastic materials. The stability and convergence of the difference scheme in the maximum norm are proved by the discrete energy method under mild conditions. A numerical example is carried out to verify our theoretical analysis results. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 11 条
[1]  
Edwards DA, 1996, J POLYM SCI POL PHYS, V34, P981, DOI 10.1002/(SICI)1099-0488(19960415)34:5<981::AID-POLB16>3.0.CO
[2]  
2-7
[3]   Traveling waves in a reaction-diffusion system: Diffusion with finite velocity and Kolmogorov-Petrovskii-Piskunov kinetics [J].
Fedotov, S .
PHYSICAL REVIEW E, 1998, 58 (04) :5143-5145
[4]   A new look to non-Fickian diffusion [J].
Ferreira, J. A. ;
Grassi, M. ;
Gudino, E. ;
de Oliveira, P. .
APPLIED MATHEMATICAL MODELLING, 2015, 39 (01) :194-204
[5]   A Second Order Approximation for Quasilinear Non-Fickian Diffusion Models [J].
Ferreira, Jose A. ;
Gudino, Elias ;
de Oliveira, Paula .
COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2013, 13 (04) :471-493
[6]   Long time behavior of non-Fickian delay reaction-diffusion equations [J].
Li, Dongfang ;
Zhang, Chengjian ;
Wang, Wansheng .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (03) :1401-1415
[7]   A fast difference scheme for the variable coefficient time-fractional diffusion wave equations [J].
Ran, Maohua ;
Lei, Xiaojuan .
APPLIED NUMERICAL MATHEMATICS, 2021, 167 :31-44
[8]  
Sun Z., 2009, NUMERICAL METHODS PA, Vsecond
[9]   A fully discrete difference scheme for a diffusion-wave system [J].
Sun, ZZ ;
Wu, XN .
APPLIED NUMERICAL MATHEMATICS, 2006, 56 (02) :193-209
[10]  
Vasilev V.A., 1986, CHEM BIOL MED