PLANAR, TOROIDAL, AND PROJECTIVE COMMUTING AND NONCOMMUTING GRAPHS

被引:28
作者
Afkhami, M. [1 ,3 ]
Farrokhi, M. D. G. [2 ]
Khashyarmanesh, K. [2 ]
机构
[1] Univ Neyshabur, Dept Math, Neyshabur, Iran
[2] Ferdowsi Univ Mashhad, Dept Pure Math, Mashhad, Iran
[3] Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
关键词
Commuting graph; Crosscap; Genus; Noncommuting graph; ELEMENTS;
D O I
10.1080/00927872.2014.910796
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, all finite groups whose commuting (noncommuting) graphs can be embed on the plane, torus, or projective plane are classified.
引用
收藏
页码:2964 / 2970
页数:7
相关论文
共 12 条
[1]   Non-commuting graph of a group [J].
Abdollahi, A ;
Akbari, S ;
Maimani, HR .
JOURNAL OF ALGEBRA, 2006, 298 (02) :468-492
[2]  
[Anonymous], GAP-Groups, Algorithms, and Programming, Version 4.12dev
[3]  
Battle J., 1962, B AM MATH SOC, V68, P656
[4]  
Beineke L.W., 1965, Proc. Glasgow Math. Assoc, V7, P19
[5]   GROUPS WHOSE ELEMENTS ARE OF ORDER 2 OR 3 [J].
BOLKER, ED .
AMERICAN MATHEMATICAL MONTHLY, 1972, 79 (09) :1007-&
[7]   103 GRAPHS THAT ARE IRREDUCIBLE FOR THE PROJECTIVE PLANE [J].
GLOVER, HH ;
HUNEKE, JP ;
WANG, CS .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1979, 27 (03) :332-370
[8]   WHAT IS PROBABILITY THAT 2 GROUP ELEMENTS COMMUTE [J].
GUSTAFSON, WH .
AMERICAN MATHEMATICAL MONTHLY, 1973, 80 (09) :1031-1034
[9]  
Kuratowski Casimir, 1930, Fund. Math. (in French), V15, P271, DOI DOI 10.1007/S10623-014-9982-0
[10]  
Massey W. S., 1967, ALGEBRAIC TOPOLOGY I