A review for cell and particle tracking on microscopy images using algorithms and deep learning technologies

被引:14
作者
Cheng, Hui -Jun [1 ,2 ]
Hsu, Ching-Hsien [3 ,4 ,5 ]
Hung, Che-Lun [6 ,7 ]
Lin, Chun -Yuan [3 ,8 ,9 ]
机构
[1] Guangzhou Med Univ, Affiliated Canc Hosp & Inst, Guangzhou, Peoples R China
[2] Providence Univ, Dept Comp Sci & Informat Engn, Taichung, Taiwan
[3] Asia Univ, Dept Comp Sci & Informat Engn, Taichung, Taiwan
[4] Foshan Univ, Sch Math & Big Data, Guangdong Hong Kong Macao Joint Lab Intelligent Mi, Foshan, Peoples R China
[5] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
[6] Natl Yang Ming Chiao Tung Univ, Inst Biomed Informat, Taipei, Taiwan
[7] Providence Univ, Dept Comp Sci & Commun Engn, Taichung, Taiwan
[8] Chang Gung Univ, Dept Comp Sci & Informat Engn, Taoyuan, Taiwan
[9] Asia Univ, Dept Comp Sci & Informat Engn, 500 Lioufeng Rd, Wufeng 41354, Taiwan
基金
中国国家自然科学基金;
关键词
Microscopy images; Single cell tracking; Single particle tracking; Segmentation; Algorithms and deep learning; SEGMENTATION; SOFTWARE; CLASSIFICATION; FRAMEWORK; PLATFORM; LINKING;
D O I
10.1016/j.bj.2021.10.001
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Time-lapse microscopy images generated by biological experiments have been widely used for observing target activities, such as the motion trajectories and survival states. Based on these observations, biologists can conclude experimental results or present new hypotheses for several biological applications, i.e. virus research or drug design. Many methods or tools have been proposed in the past to observe cell and particle activities, which are defined as single cell tracking and single particle tracking problems, by using algorithms and deep learning technologies. In this article, a review for these works is presented in order to summarize the past methods and research topics at first, then points out the problems raised by these works, and finally proposes future research directions. The contributions of this article will help researchers to understand past development trends and further propose innovative technologies.
引用
收藏
页码:465 / 471
页数:7
相关论文
共 54 条
  • [1] Cell Segmentation Proposal Network for Microscopy Image Analysis
    Akram, Saad Ullah
    Kannala, Juho
    Eklund, Lauri
    Heikkila, Janne
    [J]. DEEP LEARNING AND DATA LABELING FOR MEDICAL APPLICATIONS, 2016, 10008 : 21 - 29
  • [2] A probabilistic approach to joint cell tracking and segmentation in high-throughput microscopy videos
    Arbelle, Assaf
    Reyes, Jose
    Chen, Jia-Yun
    Lahav, Galit
    Raviv, Tammy Riklin
    [J]. MEDICAL IMAGE ANALYSIS, 2018, 47 : 140 - 152
  • [3] Efficient globally optimal segmentation of cells in fluorescence microscopy images using level sets and convex energy functionals
    Bergeest, Jan-Philip
    Rohr, Karl
    [J]. MEDICAL IMAGE ANALYSIS, 2012, 16 (07) : 1436 - 1444
  • [4] CellProfiler: image analysis software for identifying and quantifying cell phenotypes
    Carpenter, Anne E.
    Jones, Thouis Ray
    Lamprecht, Michael R.
    Clarke, Colin
    Kang, In Han
    Friman, Ola
    Guertin, David A.
    Chang, Joo Han
    Lindquist, Robert A.
    Moffat, Jason
    Golland, Polina
    Sabatini, David M.
    [J]. GENOME BIOLOGY, 2006, 7 (10)
  • [5] Cell tracking in microscopic video using matching and linking of bipartite graphs
    Chatterjee, Rohit
    Ghosh, Mayukh
    Chowdhury, Ananda S.
    Ray, Nilanjan
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2013, 112 (03) : 422 - 431
  • [6] Automated segmentation, classification, and tracking of cancer cell nuclei in time-lapse microscopy
    Chen, XW
    Zhou, XB
    Wong, STC
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2006, 53 (04) : 762 - 766
  • [7] Objective comparison of particle tracking methods
    Chenouard, Nicolas
    Smal, Ihor
    de Chaumont, Fabrice
    Maska, Martin
    Sbalzarini, Ivo F.
    Gong, Yuanhao
    Cardinale, Janick
    Carthel, Craig
    Coraluppi, Stefano
    Winter, Mark
    Cohen, Andrew R.
    Godinez, William J.
    Rohr, Karl
    Kalaidzidis, Yannis
    Liang, Liang
    Duncan, James
    Shen, Hongying
    Xu, Yingke
    Magnusson, Klas E. G.
    Jalden, Joakim
    Blau, Helen M.
    Paul-Gilloteaux, Perrine
    Roudot, Philippe
    Kervrann, Charles
    Waharte, Francois
    Tinevez, Jean-Yves
    Shorte, Spencer L.
    Willemse, Joost
    Celler, Katherine
    van Wezel, Gilles P.
    Dan, Han-Wei
    Tsai, Yuh-Show
    Ortiz de Solorzano, Carlos
    Olivo-Marin, Jean-Christophe
    Meijering, Erik
    [J]. NATURE METHODS, 2014, 11 (03) : 281 - U247
  • [8] Multiple Hypothesis Tracking for Cluttered Biological Image Sequences
    Chenouard, Nicolas
    Bloch, Isabelle
    Olivo-Marin, Jean-Christophe
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (11) : 2736 - 2750
  • [9] In vivo single-particle tracking of the aquaporin AtPIP2;1 in stomata reveals cell type-specific dynamics
    Cui, Yaning
    Zhao, Yanxia
    Lu, Yuqing
    Su, Xiao
    Chen, Yingying
    Shen, Yingbai
    Lin, Jinxing
    Li, Xiaojuan
    [J]. PLANT PHYSIOLOGY, 2021, 185 (04) : 1666 - 1681
  • [10] de Chaumont F, 2011, I S BIOMED IMAGING, P234, DOI 10.1109/ISBI.2011.5872395