Ground state solutions of a critical problem involving cylindrical weights

被引:34
作者
Musina, Roberta [1 ]
机构
[1] Univ Udine, Dipartimento Matemat & Informat, I-33100 Udine, Italy
关键词
variational methods; critical growth; weighted Hardy-Sobolev inequalities;
D O I
10.1016/j.na.2007.04.034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove some existence and non-existence results for a nonlinear elliptic equation involving cylindrical weights and critical growth. More precisely, defining xi = (x, y) epsilon R-k x RN-k, we study the variational problem {-div(vertical bar x vertical bar(a)del u) = lambda vertical bar x vertical bar(a-2)u + vertical bar x vertical bar(-b)u(p-1) in R-N, x not equal 0 u >= 0 under suitable assumptions for the parameters p epsilon (2, 2*) and a, lambda, b epsilon R. We firstly consider the strongly elliptic case a = 0. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3972 / 3986
页数:15
相关论文
共 19 条
[1]   An improved Hardy-Sobolev inequality and its application [J].
Adimurthi ;
Chaudhuri, N ;
Ramaswamy, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (02) :489-505
[2]  
[Anonymous], 1980, SOBOLEV SPACES
[3]   A Sobolev-Hardy inequality with applications to a nonlinear elliptic equation arising in astrophysics [J].
Badiale, M ;
Tarantello, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 163 (04) :259-293
[4]   A unified approach to improved Lp hardy inequalities with best constants [J].
Barbatis, G ;
Filippas, S ;
Tertikas, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (06) :2169-2196
[5]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[6]  
Brezis H., 1997, Rev. Mat. Univ. Complut. Madrid, V10, P443
[7]  
Brezis H., 1997, ANN SC NORM PISA, V25, P217
[8]   On a semilinear elliptic equation with inverse-square potential [J].
Brezis, Haim ;
Dupaigne, Louis ;
Tesei, Alberto .
SELECTA MATHEMATICA-NEW SERIES, 2005, 11 (01) :1-7
[9]  
CAFFARELLI L, 1984, COMPOS MATH, V53, P259
[10]   On the existence of extremal functions for a weighted Sobolev embedding with critical exponent [J].
Caldiroli, P ;
Musina, R .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1999, 8 (04) :365-387