Grain-boundary activated pyramidal dislocations in nano-textured Mg by molecular dynamics simulation

被引:42
作者
Kim, D. -H. [1 ]
Ebrahimi, F. [1 ]
Manuel, M. V. [1 ]
Tulenko, J. S. [2 ]
Phillpot, S. R. [1 ]
机构
[1] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA
[2] Univ Florida, Dept Nucl & Radiol Engn, Gainesville, FL 32611 USA
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2011年 / 528卷 / 16-17期
基金
美国国家科学基金会;
关键词
Magnesium; Dislocation; Pyramidal slip; Molecular dynamics; STACKING-FAULT ENERGIES; CLOSE-PACKED METALS; NONBASAL SLIP SYSTEMS; HCP METALS; CORE STRUCTURE; EDGE DISLOCATIONS; SCREW DISLOCATION; ROOM-TEMPERATURE; PEIERLS STRESS; MAGNESIUM;
D O I
10.1016/j.msea.2011.02.082
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The generation and structures of first- and second-order pyramidal (c + a) dislocations, 1/3{1 0 (1) over bar 1} ((1) over bar (1) over bar 2 3) and 1/3{1 1 (2) over bar 2} ((1) over bar (1) over bar 2 3), are determined in pure magnesium using molecular dynamics simulation. In particular, simulations of [1 1 (2) over bar 0]- and [1 0 (1) over bar 0]-textured polycrystalline Mg display pyramidal (c + a) slip nucleated at grain boundaries. Both the first- and second-order dislocations appear as a partial or extended edge type. In the [1 1 (2) over bar 0]-textured Mg, the first-order pyramidal (c + a) slip occurs with 1/6((2) over bar 0 2 3) partials or 1/9[0 (1) over bar 1 3] + 1/18[(6) over bar 2 4 3] + 1/6[0 (2) over bar 2 3] extended dislocations. Secondary pyramidal dislocations are created with edge type from grain boundaries in the [1 0 (1) over bar 0]-texture. The pyramidal (c + a) slip on the {1 1 (2) over bar 2} plane can extend to the basal plane, on which it is terminated by a screw dislocation on the {1 0 (1) over bar 1} plane. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:5411 / 5420
页数:10
相关论文
共 45 条
[1]   Molecular dynamics simulation of ⟨c+a⟩ dislocation core structure in hexagonal-close-packed metals [J].
Ando, S ;
Gotoh, T ;
Tonda, H .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2002, 33 (03) :823-829
[2]  
Bacon DJ, 2002, METALL MATER TRANS A, V33, P721, DOI 10.1007/s11661-002-1001-9
[3]   Plasticity of initially textured hexagonal polycrystals at high homologous temperatures: application to titanium [J].
Balasubramanian, S ;
Anand, L .
ACTA MATERIALIA, 2002, 50 (01) :133-148
[4]   Stacking faults in magnesium [J].
Chetty, N ;
Weinert, M .
PHYSICAL REVIEW B, 1997, 56 (17) :10844-10851
[5]   STRUCTURAL-CHANGES ACCOMPANYING DENSIFICATION OF RANDOM HARD-SPHERE PACKINGS [J].
CLARKE, AS ;
JONSSON, H .
PHYSICAL REVIEW E, 1993, 47 (06) :3975-3984
[6]   AN INSITU STUDY OF PRISMATIC GLIDE IN MAGNESIUM .2. MICROSCOPIC ACTIVATION PARAMETERS [J].
COURET, A ;
CAILLARD, D .
ACTA METALLURGICA, 1985, 33 (08) :1455-1462
[7]   STACKING-FAULT ENERGIES OF BERYLLIUM, MG, AL, CU, AG, AND AU [J].
DEVLIN, JF .
JOURNAL OF PHYSICS F-METAL PHYSICS, 1974, 4 (11) :1865-1882
[8]   THE NOSE-HOOVER THERMOSTAT [J].
EVANS, DJ ;
HOLIAN, BL .
JOURNAL OF CHEMICAL PHYSICS, 1985, 83 (08) :4069-4074
[9]   STACKING-FAULT ENERGIES OF HCP METALS [J].
FLEISCHER, RL .
SCRIPTA METALLURGICA, 1986, 20 (02) :223-224
[10]  
Hirth J.P., 1982, Theory of Dislocations