Vibration of fast trains, palindromic eigenvalue problems and structure-preserving doubling algorithms

被引:34
作者
Chu, Eric King-Wah [1 ]
Hwang, Tsung-Min [2 ]
Lin, Wen-Wei [3 ]
Wu, Chin-Tien [4 ]
机构
[1] Monash Univ, Sch Math Sci, Clayton, Vic 3800, Australia
[2] Natl Taiwan Normal Univ, Dept Math, Taipei 11677, Taiwan
[3] Natl Tsing Hua Univ, Dept Math, Hsinchu 300, Taiwan
[4] Natl Taiwan Ocean Univ, Dept Comp Sci & Engn, Chilung 20224, Taiwan
关键词
palindromic eigenvalue problem; nonlinear matrix equation; structure-preserving; doubling algorithm;
D O I
10.1016/j.cam.2007.07.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The vibration of fast trains is governed by a quadratic palindromic eigenvalue problem (lambda(2)A(1)(T) + lambda A(0) + A(1))x = 0. where A(0), A1 epsilon C-n (x) (n) and A(0)(T) = A(0). Accurate and efficient solution can only be obtained using algorithms which preserve the structure of the eigenvalue problem. This paper reports on the successful application of the structure-preserving doubling algorithms. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:237 / 252
页数:16
相关论文
共 21 条
[1]   A structure-preserving doubling algorithm for continuous-time algebraic Riccati equations [J].
Chu, EKW ;
Fan, HY ;
Lin, WW .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 396 :55-80
[2]   Structure-preserving algorithms for periodic discrete-time algebraic Riccati equations [J].
Chu, EKW ;
Fan, HY ;
Lin, WW ;
Wang, CS .
INTERNATIONAL JOURNAL OF CONTROL, 2004, 77 (08) :767-788
[3]   Perturbation of eigenvalues for matrix polynomials via the Bauer-Fike theorems [J].
Chu, EKW .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2003, 25 (02) :551-573
[4]  
CHU EKW, 2006, PREPRINTS MATH
[5]  
CHU EKW, 2006, NCTS PREPRINTS MATH
[6]  
GOHBERG IC, 1982, MATRIX POLYNOMIALS
[7]  
Golub G. H., 1996, MATRIX COMPUTATIONS
[8]   Algorithms for hyperbolic quadratic eigenvalue problems [J].
Guo, CH ;
Lancaster, P .
MATHEMATICS OF COMPUTATION, 2005, 74 (252) :1777-1791
[9]   A structure-preserving doubling algorithm for nonsymmetric algebraic Riccati equation [J].
Guo, XX ;
Lin, WW ;
Xu, SF .
NUMERISCHE MATHEMATIK, 2006, 103 (03) :393-412
[10]  
HILLIGES A, 2004, THESIS TECHNICAL U B