Vibration of fast trains, palindromic eigenvalue problems and structure-preserving doubling algorithms

被引:34
|
作者
Chu, Eric King-Wah [1 ]
Hwang, Tsung-Min [2 ]
Lin, Wen-Wei [3 ]
Wu, Chin-Tien [4 ]
机构
[1] Monash Univ, Sch Math Sci, Clayton, Vic 3800, Australia
[2] Natl Taiwan Normal Univ, Dept Math, Taipei 11677, Taiwan
[3] Natl Tsing Hua Univ, Dept Math, Hsinchu 300, Taiwan
[4] Natl Taiwan Ocean Univ, Dept Comp Sci & Engn, Chilung 20224, Taiwan
关键词
palindromic eigenvalue problem; nonlinear matrix equation; structure-preserving; doubling algorithm;
D O I
10.1016/j.cam.2007.07.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The vibration of fast trains is governed by a quadratic palindromic eigenvalue problem (lambda(2)A(1)(T) + lambda A(0) + A(1))x = 0. where A(0), A1 epsilon C-n (x) (n) and A(0)(T) = A(0). Accurate and efficient solution can only be obtained using algorithms which preserve the structure of the eigenvalue problem. This paper reports on the successful application of the structure-preserving doubling algorithms. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:237 / 252
页数:16
相关论文
共 50 条
  • [1] STRUCTURE-PRESERVING ALGORITHMS FOR PALINDROMIC QUADRATIC EIGENVALUE PROBLEMS ARISING FROM VIBRATION OF FAST TRAINS
    Huang, Tsung-Ming
    Lin, Wen-Wei
    Qian, Jiang
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (04) : 1566 - 1592
  • [2] The asymptotic analysis of the structure-preserving doubling algorithms
    Kuo, Yueh-Cheng
    Lin, Wen-Wei
    Shieh, Shih-Feng
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 531 : 318 - 355
  • [3] Structure-preserving ΓQR and Γ-Lanczos algorithms for Bethe-Salpeter eigenvalue problems
    Guo, Zhen-Chen
    Li, Tiexiang
    Zhou, Ying-Ying
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 341 : 12 - 30
  • [4] SOLVING A STRUCTURED QUADRATIC EIGENVALUE PROBLEM BY A STRUCTURE-PRESERVING DOUBLING ALGORITHM
    Guo, Chun-Hua
    Lin, Wen-Wei
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2010, 31 (05) : 2784 - 2801
  • [5] A structure-preserving doubling algorithm for quadratic eigenvalue problems arising from time-delay systems
    Li, Tie-Xiang
    Chu, Eric King-wah
    Lin, Wen-Wei
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (08) : 1733 - 1745
  • [6] A new structure-preserving method for quaternion Hermitian eigenvalue problems
    Jia, Zhigang
    Wei, Musheng
    Ling, Sitao
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 239 : 12 - 24
  • [7] A structure-preserving Jacobi algorithm for quaternion Hermitian eigenvalue problems
    Ma, Ru-Ru
    Jia, Zhi-Gang
    Bai, Zheng-Jian
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (03) : 809 - 820
  • [8] Numerical solution of quadratic eigenvalue problems with structure-preserving methods
    Hwang, TM
    Lin, WW
    Mehrmann, V
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2003, 24 (04): : 1283 - 1302
  • [9] A symmetric structure-preserving FQR algorithm for linear response eigenvalue problems
    Li, Tiexiang
    Li, Ren-Cang
    Lin, Wen-Wei
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 520 : 191 - 214
  • [10] A new structure-preserving method for dual quaternion Hermitian eigenvalue problems
    Ding, Wenxv
    Li, Ying
    Wei, Musheng
    APPLIED MATHEMATICS LETTERS, 2025, 163