Rings with Zassenhaus families of ideals

被引:4
作者
Buckner, Joshua [1 ]
Dugas, Manfred [1 ]
机构
[1] Baylor Univ, Dept Math, Waco, TX 76798 USA
关键词
rings of algebraic integers; Zassenhaus families;
D O I
10.1080/00927870801949641
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a ring with identity. We call a family F of left ideals of R a Zassenhaus family if the only additive endomorphisms of R that leave all members of F invariant are the left multiplications by elements of R. Moreover, if R is torsion-free and there is some left R-module M such that R subset of M subset of R circle times(Z)Q and End(Z)(M) = R we call R a "Zassenhaus ring". It is well known that all Zassenhaus rings have Zassenhaus families. We will give examples to show that the converse does not hold even for torsion-free rings of finite rank.
引用
收藏
页码:2133 / 2142
页数:10
相关论文
共 9 条
[1]   Quasi-localizations of Z [J].
Buckner, Joshua ;
Dugas, Manfred .
ISRAEL JOURNAL OF MATHEMATICS, 2007, 160 (01) :349-370
[2]   Left rigid rings [J].
Buckner, Joshua ;
Dugas, Manfred .
JOURNAL OF ALGEBRA, 2007, 309 (01) :192-206
[3]  
BUTLER M, 1968, J LOND MATH SOC, V43, P202
[4]  
Corner A. L. S., 1963, P LOND MATH SOC, P687
[5]  
DUGAS M, FUND MATH IN PRESS
[6]  
Hungerford ThomasW., 1974, GRADUATE TEXTS MATH
[7]   TORSION-FREE E-MODULES [J].
MADER, A ;
VINSONHALER, C .
JOURNAL OF ALGEBRA, 1988, 115 (02) :401-411
[8]  
REID JD, 1995, J ALGEBRA, V175, P878
[9]   ORDERS AS ENDOMORPHISM RINGS OF MODULES OF SAME RANK [J].
ZASSENHAUS, H .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1967, 42 (165P) :180-+