Offset-Free Robust MPC of Systems with Mixed Stochastic and Deterministic Uncertainty

被引:9
作者
Paulson, Joel A. [1 ]
Xie, Lantao [1 ]
Mesbah, Ali [1 ]
机构
[1] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA
来源
IFAC PAPERSONLINE | 2017年 / 50卷 / 01期
关键词
Model predictive control; Offset-free tracking; Probabilistic/robust tubes; MODEL-PREDICTIVE CONTROL; CONSTRAINED LINEAR-SYSTEMS; FUTURE; OPTIMIZATION; STATE;
D O I
10.1016/j.ifacol.2017.08.946
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a robust model predictive control (MPC) approach for offset free tracking of piece-wise constant references in the presence of bounded deterministic and stochastic disturbances. The system is considered to be linear with two sources of additive bounded uncertainties on the states. The first uncertainty source accounts for unknown, deterministic structural/parametric plant-model mismatch. The second uncertainty source represents stochastic exogenous system disturbances. The proposed deterministic-stochastic robust MPC approach uses estimates of the deterministic model uncertainties to modify the nominal state and input targets. This allows for achieving offset-free tracking of the mean of the controlled variables. A non-conservative constraint tightening procedure is used to handle probabilistic state constraints and hard input constraints in the presence of stochastic uncertainties. The computational complexity of the proposed robust MPC approach is comparable to that of nominal MPC. The closed-loop performance of the proposed robust MPC approach is compared to that of robust tube-based MPC and stochastic MPC in a simulation study. (C) 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:3530 / 3535
页数:6
相关论文
共 17 条
[1]  
Alvarado I., 2007, 2007 46 IEEE C DEC C, P1820
[2]  
Bemporad A, 1999, LECT NOTES CONTR INF, V245, P207
[3]   Robust Model Predictive Control via Scenario Optimization [J].
Calafiore, Giuseppe C. ;
Fagiano, Lorenzo .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2013, 58 (01) :219-224
[4]   Stochastic Tubes in Model Predictive Control With Probabilistic Constraints [J].
Cannon, Mark ;
Kouvaritakis, Basil ;
Rakovic, Sasa V. ;
Cheng, Qifeng .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2011, 56 (01) :194-200
[5]   LINEAR-SYSTEMS WITH STATE AND CONTROL CONSTRAINTS - THE THEORY AND APPLICATION OF MAXIMAL OUTPUT ADMISSIBLE-SETS [J].
GILBERT, EG ;
TAN, KT .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1991, 36 (09) :1008-1020
[6]   Optimization over state feedback policies for robust control with constraints [J].
Goulart, PJ ;
Kerrigan, EC ;
Maciejowski, JA .
AUTOMATICA, 2006, 42 (04) :523-533
[7]   Explicit use of probabilistic distributions in linear predictive control [J].
Kouvaritakis, Basil ;
Cannon, Mark ;
Rakovic, Sasa V. ;
Cheng, Qifeng .
AUTOMATICA, 2010, 46 (10) :1719-1724
[8]   MPC for tracking piecewise constant references for constrained linear systems [J].
Limon, D. ;
Alvarado, I. ;
Alamo, T. ;
Camacho, E. F. .
AUTOMATICA, 2008, 44 (09) :2382-2387
[9]  
Ljung L, 1998, APPL NUM HARM ANAL, P163
[10]  
Lorenzen M, 2015, P AMER CONTR CONF, P944, DOI 10.1109/ACC.2015.7170855