Nonorientable hamilton cycle embeddings of complete tripartite graphs

被引:3
作者
Ellingham, M. N. [1 ]
Schroeder, Justin Z. [1 ]
机构
[1] Vanderbilt Univ, Dept Math, Stevenson Ctr 1326, Nashville, TN 37240 USA
关键词
Complete tripartite graph; Graph embedding; Nonorientable genus; Hamilton cycle; ORIENTABLE GENUS; JOINS;
D O I
10.1016/j.disc.2012.02.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A cyclic construction is presented for building embeddings of the complete tripartite graph K-n,K-n,K-n on a nonorientable surface such that the boundary of every face is a hamilton cycle. This construction works for several families of values of n, and we extend the result to all n with some methods of Bouchet and others. The nonorientable genus of K-t,K-n,K-n,K-n for t >= 2n, is then determined using these embeddings and a surgical method called the 'diamond sum' technique. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:1911 / 1917
页数:7
相关论文
共 15 条
[1]   (M)-COVERING OF A TRIANGULATION [J].
BENARD, D ;
BOUCHET, A ;
FOUQUET, JL .
DISCRETE MATHEMATICS, 1986, 62 (03) :261-270
[2]  
Boucher A., 1978, LECT NOTES MATH, V642, P86
[5]   The nonorientable genus of joins of complete graphs with large edgeless graphs [J].
Ellingham, M. N. ;
Stephens, D. Christopher .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2007, 97 (05) :827-845
[6]   The nonorientable genus of complete tripartite graphs [J].
Ellingham, M. N. ;
Stephens, Chris ;
Zha, Xiaoya .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2006, 96 (04) :529-559
[7]   The orientable genus of some joins of complete graphs with large edgeless graphs [J].
Ellingham, M. N. ;
Stephens, D. Christopher .
DISCRETE MATHEMATICS, 2009, 309 (05) :1190-1198
[8]   Hamiltonian embeddings from triangulations [J].
Grannell, Mike J. ;
Griggs, Terry S. ;
Siran, Jozef .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2007, 39 :447-452
[9]  
Gross Jonathan L., 1987, Topological Graph Theory
[10]   Orientable and nonorientable genera for some complete tripartite graphs [J].
Kawarabayashi, K ;
Stephens, C ;
Zha, XY .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2005, 18 (03) :479-487