Split operator method for fluorescence diffuse optical tomography using anisotropic diffusion regularisation with prior anatomical information

被引:33
作者
Correia, Teresa [1 ]
Aguirre, Juan [2 ]
Sisniega, Alejandro [2 ]
Chamorro-Servent, Judit [2 ]
Abascal, Juan [2 ]
Vaquero, Juan J. [2 ]
Desco, Manuel [2 ,3 ]
Kolehmainen, Ville [4 ]
Arridge, Simon [1 ]
机构
[1] UCL, Dept Comp Sci, London WC1E 6BT, England
[2] Univ Carlos III Madrid, Dept Bioingn & Ingn Aeroespacial, E-28903 Getafe, Spain
[3] Hosp Gen Univ Gregorio Maranon, CIBER Salud Mental CIBERSAM, Unidad Med & Cirugia Expt, Madrid, Spain
[4] Univ Kuopio, Dept Appl Phys, FIN-70211 Kuopio, Finland
基金
英国工程与自然科学研究理事会;
关键词
IN-VIVO; MOLECULAR TOMOGRAPHY; IMAGE-RECONSTRUCTION; EDGE-DETECTION; BREAST; SCHEMES; SYSTEM;
D O I
10.1364/BOE.2.002632
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Fluorescence diffuse optical tomography (fDOT) is an imaging modality that provides images of the fluorochrome distribution within the object of study. The image reconstruction problem is ill-posed and highly underdetermined and, therefore, regularisation techniques need to be used. In this paper we use a nonlinear anisotropic diffusion regularisation term that incorporates anatomical prior information. We introduce a split operator method that reduces the nonlinear inverse problem to two simpler problems, allowing fast and efficient solution of the fDOT problem. We tested our method using simulated, phantom and ex-vivo mouse data, and found that it provides reconstructions with better spatial localisation and size of fluorochrome inclusions than using the standard Tikhonov penalty term. (C) 2011 Optical Society of America
引用
收藏
页码:2632 / 2648
页数:17
相关论文
共 42 条
[1]  
Aguirre J., 2008, NUCL SCI S 2008 NSS, P5412
[2]   Imaging performance of a hybrid x-ray computed tomography-fluorescence molecular tomography system using priors [J].
Ale, Angelique ;
Schulz, Ralf B. ;
Sarantopoulos, Athanasios ;
Ntziachristos, Vasilis .
MEDICAL PHYSICS, 2010, 37 (05) :1976-1986
[3]   Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study [J].
Alexandrakis, G ;
Rannou, FR ;
Chatziioannou, AF .
PHYSICS IN MEDICINE AND BIOLOGY, 2005, 50 (17) :4225-4241
[4]  
[Anonymous], 2002, COMPUTATIONAL METHOD
[5]  
Arridge S. R., 2007, INT WORKSH MATH METH, P1
[6]   Optical tomography: forward and inverse problems [J].
Arridge, Simon R. ;
Schotland, John C. .
INVERSE PROBLEMS, 2009, 25 (12)
[7]   Robust anisotropic diffusion [J].
Black, MJ ;
Sapiro, G ;
Marimont, DH ;
Heeger, D .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1998, 7 (03) :421-432
[8]  
Boas D., 1996, THESIS U PENNSYLVANI
[9]   IMAGE SELECTIVE SMOOTHING AND EDGE-DETECTION BY NONLINEAR DIFFUSION [J].
CATTE, F ;
LIONS, PL ;
MOREL, JM ;
COLL, T .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (01) :182-193
[10]   Image recovery via total variation minimization and related problems [J].
Chambolle, A ;
Lions, PL .
NUMERISCHE MATHEMATIK, 1997, 76 (02) :167-188