Prediction of Cement Compressive Strength by Combining Dynamic Models of Neural Networks

被引:5
作者
Tsamatsoulis, D. [1 ]
机构
[1] HeidelbergCement Grp, Devnya 9160, Bulgaria
关键词
cement; compressive strength; modeling; neural network; optimization; CONCRETE;
D O I
10.15255/CABEQ.2021.1952
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
This study aimed at developing models predicting cement strength based on shallow neural networks (ANN) using exclusively industrial data. The models used physical, chemical, and early strength results to forecast those for 28- and 7-day. Neural networks were trained dynamically for a movable period and then used for a future period of at least one day. The study includes nine types of activation functions. The algorithms use the root mean square errors of testing sets (RMSEFuture) and their robustness as optimization criteria. The RMSEFuture of the best models with optimum ANNs was in the range of 1.36 MPa to 1.63 MPa, which is near or within the area of long-term repeatability of a very competent laboratory. Continuous application of the models in actual conditions of a cement plant in the long-term showed a performance at least equivalent to that calculated during the design step.
引用
收藏
页码:295 / 318
页数:24
相关论文
共 35 条
[1]   Fuzzy logic model for the prediction of cement compressive strength [J].
Akkurt, S ;
Tayfur, G ;
Can, S .
CEMENT AND CONCRETE RESEARCH, 2004, 34 (08) :1429-1433
[2]   The use of GA-ANNs in the modelling of compressive strength of cement mortar [J].
Akkurt, S ;
Ozdemir, S ;
Tayfur, G ;
Akyol, B .
CEMENT AND CONCRETE RESEARCH, 2003, 33 (07) :973-979
[3]  
Asklany S, 2019, INT J COMPUT SCI NET, V19, P7
[4]  
Badi I., 2013, INT J SCI ENV TECHNO, V2, P779
[5]  
Basirat M., QUEST GOLDEN ACTIVAT
[6]   An approach for predicting the compressive strength of cement-based materials exposed to sulfate attack [J].
Chen, Huaicheng ;
Qian, Chunxiang ;
Liang, Chengyao ;
Kang, Wence .
PLOS ONE, 2018, 13 (01)
[7]   A comparative study on the compressive strength prediction models for High Performance Concrete containing nano silica and copper slag using regression analysis and Artificial Neural Networks [J].
Chithra, S. ;
Kumar, S. R. R. Senthil ;
Chinnaraju, K. ;
Ashmita, F. Alfin .
CONSTRUCTION AND BUILDING MATERIALS, 2016, 114 :528-535
[8]   Machine learning in concrete strength simulations: Multi-nation data analytics [J].
Chou, Jui-Sheng ;
Tsai, Chih-Fong ;
Anh-Duc Pham ;
Lu, Yu-Hsin .
CONSTRUCTION AND BUILDING MATERIALS, 2014, 73 :771-780
[9]   Optimizing the Prediction Accuracy of Concrete Compressive Strength Based on a Comparison of Data-Mining Techniques [J].
Chou, Jui-Sheng ;
Chiu, Chien-Kuo ;
Farfoura, Mahmoud ;
Al-Taharwa, Ismail .
JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 2011, 25 (03) :242-253
[10]   Sigmoid-weighted linear units for neural network function approximation in reinforcement learning [J].
Elfwing, Stefan ;
Uchibe, Eiji ;
Doya, Kenji .
NEURAL NETWORKS, 2018, 107 :3-11