The finite difference/finite volume method for solving the fractional diffusion equation

被引:11
|
作者
Zhang, Tie [1 ,2 ]
Guo, Qingxin [2 ]
机构
[1] Northeastern Univ, Dept Math, Shenyang 110004, Liaoning, Peoples R China
[2] Northeastern Univ, State Key Lab Synthet Automat Proc Ind, Shenyang 110004, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional parabolic equation; Finite volume method; Unconditional stability; Optimal error estimate; ELEMENT-METHOD; SPACE; SUPERCONVERGENCE; APPROXIMATIONS;
D O I
10.1016/j.jcp.2018.08.033
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we study the finite volume method for solving the time-fractional diffusion equation: partial derivative(alpha)(t)u - div(A del u) = f, 0 < alpha < 1. We present and analyze a fully discrete numerical scheme which is based on the linear finite volume method for the spatial discretization and the LI difference approximation to partial derivative(alpha)(t)u. We first establish a new error bound of 0 (Delta t(1+delta-alpha))-order for the Ll formula under the condition of u(t) epsilon C-1,C-8[0,T] where delta epsilon [0, 1] is the Holder continuity index. Then, we prove that this fully discrete finite volume scheme is unconditionally stable and the discrete solution admits the optimal error estimate of 0 (Delta t(1+delta-alpha) + h(2) )-order in the L2 -norm. Numerical examples are provided to support our theoretical analysis. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:120 / 134
页数:15
相关论文
共 50 条
  • [1] A FINITE DIFFERENCE/FINITE VOLUME METHOD FOR SOLVING THE FRACTIONAL DIFFUSION WAVE EQUATION
    Sun, Yinan
    Zhang, Tie
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 58 (03) : 553 - 569
  • [2] Finite Difference Method for Solving the Time Fractional Diffusion Equation
    Zhang, Yu-xin
    Ding, Hengfei
    ASIASIM 2012, PT III, 2012, 325 : 115 - 123
  • [3] A new fractional finite volume method for solving the fractional diffusion equation
    Liu, F.
    Zhuang, P.
    Turner, I.
    Burrage, K.
    Anh, V.
    APPLIED MATHEMATICAL MODELLING, 2014, 38 (15-16) : 3871 - 3878
  • [4] Compact finite difference method for the fractional diffusion equation
    Cui, Mingrong
    JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (20) : 7792 - 7804
  • [5] A Finite Difference Method for Solving the Wave Equation with Fractional Damping
    Cui, Manruo
    Ji, Cui-Cui
    Dai, Weizhong
    MATHEMATICAL AND COMPUTATIONAL APPLICATIONS, 2024, 29 (01)
  • [6] Compact finite difference method to numerically solving a stochastic fractional advection-diffusion equation
    N. H. Sweilam
    D. M. El-Sakout
    M. M. Muttardi
    Advances in Difference Equations, 2020
  • [7] Compact finite difference method to numerically solving a stochastic fractional advection-diffusion equation
    Sweilam, N. H.
    El-Sakout, D. M.
    Muttardi, M. M.
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [8] A numerical study on solving a fractional time-space diffusion equation via the finite difference method
    Zakaria, Mouhssine
    Moujahid, Abdelaziz
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, 70 (01) : 771 - 788
  • [9] A numerical study on solving a fractional time-space diffusion equation via the finite difference method
    Mouhssine Zakaria
    Abdelaziz Moujahid
    Journal of Applied Mathematics and Computing, 2024, 70 : 771 - 788
  • [10] Finite Difference-Collocation Method for the Generalized Fractional Diffusion Equation
    Kumar, Sandeep
    Pandey, Rajesh K.
    Kumar, Kamlesh
    Kamal, Shyam
    Thach Ngoc Dinh
    FRACTAL AND FRACTIONAL, 2022, 6 (07)