Robotic fabrication of high-quality lamellae for aberration-corrected transmission electron microscopy

被引:10
|
作者
Tsurusawa, Hideyo [1 ]
Nakanishi, Nobuto [1 ]
Kawano, Kayoko [1 ]
Chen, Yiqiang [2 ]
Dutka, Mikhail [2 ]
Van Leer, Brandon [3 ]
Mizoguchi, Teruyasu [4 ]
机构
[1] FEI Japan Ltd, Thermo Fisher Sci, Shinagawa Ku, 4-12-2 Higashi Shinagawa, Tokyo 1400002, Japan
[2] Thermo Fisher Sci, Achtseweg Noord 5, NL-5651 GG Eindhoven, Netherlands
[3] Thermo Fisher Sci, 5350 NE Dawson Creek Dr, Hillsboro, OR 97124 USA
[4] Univ Tokyo, Inst Ind Sci, Meguro Ku, 4-6-1 Komaba, Tokyo 1538505, Japan
关键词
VIBRATIONAL SPECTROSCOPY; SAMPLE PREPARATION; ATOMIC COLUMNS; PHASE-CONTRAST; STEM; CHEMISTRY; CRYSTAL; SEARCH;
D O I
10.1038/s41598-021-00595-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Aberration-corrected scanning transmission electron microscopy (STEM) is widely used for atomic-level imaging of materials but severely requires damage-free and thin samples (lamellae). So far, the preparation of the high-quality lamella from a bulk largely depends on manual processes by a skilled operator. This limits the throughput and repeatability of aberration-corrected STEM experiments. Here, inspired by the recent successes of "robot scientists", we demonstrate robotic fabrication of high-quality lamellae by focused-ion-beam (FIB) with automation software. First, we show that the robotic FIB can prepare lamellae with a high success rate, where the FIB system automatically controls rough-milling, lift-out, and final-thinning processes. Then, we systematically optimized the FIB parameters of the final-thinning process for single crystal Si. The optimized Si lamellae were evaluated by aberration-corrected STEM, showing atomic-level images with 55 pm resolution and quantitative repeatability of the spatial resolution and lamella thickness. We also demonstrate robotic fabrication of high-quality lamellae of SrTiO3 and sapphire, suggesting that the robotic FIB system may be applicable for a wide range of materials. The throughput of the robotic fabrication was typically an hour per lamella. Our robotic FIB will pave the way for the operator-free, high-throughput, and repeatable fabrication of the high-quality lamellae for aberration-corrected STEM.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Exploring aberration-corrected electron microscopy for compound semiconductors
    Smith, David J.
    Aoki, Toshihiro
    Mardinly, John
    Zhou, Lin
    McCartney, Martha R.
    MICROSCOPY, 2013, 62 : S65 - S73
  • [42] Aberration-corrected Electron Microscopy Imaging for Nanoelectronics Applications
    Kisielowski, C.
    Specht, P.
    Alloyeau, D.
    Erni, R.
    Ramasse, Q.
    FRONTIERS OF CHARACTERIZATION AND METROLOGY FOR NANOELECTRONICS: 2009, 2009, 1173 : 231 - +
  • [43] Advances in Aberration-Corrected Scanning Transmission Electron Microscopy and Electron Energy-Loss Spectroscopy
    Krivanek, Ondrej L.
    Dellby, Niklas
    Keyse, Robert J.
    Murfitt, Matthew F.
    Own, Christopher S.
    Szilagyi, Zoltan S.
    ADVANCES IN IMAGING AND ELECTRON PHYSICS, VOL 153, 2008, 153 : 121 - +
  • [44] High-resolution characterization of multiferroic heterojunction using aberration-corrected scanning transmission electron microscopy
    Yuan, Zhoushen
    Ruan, Jieji
    Xie, Lin
    Pan, Xiaoqing
    Wu, Di
    Wang, Peng
    APPLIED PHYSICS LETTERS, 2017, 110 (17)
  • [45] Imaging modes for scanning confocal electron microscopy in a double aberration-corrected transmission electron microscope
    Nellist, P. D.
    Cosgriff, E. C.
    Behan, G.
    Kirkland, A. I.
    MICROSCOPY AND MICROANALYSIS, 2008, 14 (01) : 82 - 88
  • [46] Energy Filtered Scanning Confocal Electron Microscopy in a Double Aberration-Corrected Transmission Electron Microscope
    Wang, P.
    Behan, G.
    Kirkland, A. I.
    Nellist, P. D.
    MICROSCOPY AND MICROANALYSIS, 2009, 15 : 42 - 43
  • [47] ABERRATION CORRECTED TRANSMISSION ELECTRON MICROSCOPY
    Walther, Thomas
    Dunin-Borkowski, Rafal E.
    Rouviere, Jean-Luc
    Stach, Eric A.
    JOURNAL OF MATERIALS RESEARCH, 2017, 32 (05) : 911 - 911
  • [48] Identification of light elements in silicon nitride by aberration-corrected scanning transmission electron microscopy
    Idrobo, Juan C.
    Walkosz, Weronika
    Klie, Robert F.
    Oeguet, Serdar
    ULTRAMICROSCOPY, 2012, 123 : 74 - 79
  • [49] Depth sectioning of individual dopant atoms with aberration-corrected scanning transmission electron microscopy
    Xin, Huolin L.
    Intaraprasonk, Varat
    Muller, David A.
    APPLIED PHYSICS LETTERS, 2008, 92 (01)
  • [50] Aberration-corrected scanning transmission electron microscopy: the potential for nano- and interface science
    Pennycook, SJ
    Lupini, AR
    Kadavanich, A
    McBride, JR
    Rosenthal, SJ
    Puetter, RC
    Yahil, A
    Krivanek, OL
    Dellby, N
    Nellist, PDL
    Duscher, G
    Wang, LG
    Pantelides, ST
    ZEITSCHRIFT FUR METALLKUNDE, 2003, 94 (04): : 350 - 357