Nonsymmetric algebraic Riccati equations and Hamiltonian-like matrices

被引:88
作者
Juang, J [1 ]
Lin, WW
机构
[1] Natl Chiao Tung Univ, Dept Appl Math, Hsinchu 31015, Taiwan
[2] Natl Tsing Hua Univ, Inst Appl Math, Hsinchu 30043, Taiwan
关键词
Hamiltonian; algebraic Riccati equation; M-matrices; nonnegative matrices; transport theory;
D O I
10.1137/S0895479897318253
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a nonsymmetric algebraic matrix Riccati equation arising from transport theory. The nonnegative solutions of the equation can be explicitly constructed via the inversion formula of a Cauchy matrix. An error analysis and numerical results are given. We also show a comparison theorem of the nonnegative solutions.
引用
收藏
页码:228 / 243
页数:16
相关论文
共 21 条
[1]  
Bellman R., 1975, INTRO INVARIANT EMBE
[2]  
Bellman R., 1970, INTRO MATRIX ANAL
[3]   RANK-ONE MODIFICATION OF SYMMETRIC EIGENPROBLEM [J].
BUNCH, JR ;
NIELSEN, CP ;
SORENSEN, DC .
NUMERISCHE MATHEMATIK, 1978, 31 (01) :31-48
[4]  
BYERS R, 1986, COMPUTATIONAL COMBIN, P185
[5]  
Chandrasekhar S., 1950, RAD TRANSFER
[6]   POLYNOMIAL FACTORIZATION VIA RICCATI EQUATION [J].
CLEMENTS, DJ ;
ANDERSON, BDO .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1976, 31 (01) :179-205
[7]  
Coron F., 1990, Transport Theory and Statistical Physics, V19, P89, DOI 10.1080/00411459008214506
[8]  
CUPPEN JJM, 1981, NUMER MATH, V36, P177, DOI 10.1007/BF01396757
[9]   AN INVERSION-FORMULA AND FAST ALGORITHMS FOR CAUCHY-VANDERMONDE MATRICES [J].
FINCK, T ;
HEINIG, G ;
ROST, K .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1993, 183 :179-191
[10]  
Ganapol B. D., 1992, Transport Theory and Statistical Physics, V21, P1, DOI 10.1080/00411459208203520